

Build Windows 8
Apps with HTML5 and
JavaScript

Dino Esposito
Francesco Esposito

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by Dino Esposito
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7594-0

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Christopher Hearse

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Russ Mullen

Indexer: Angela Howard

Cover Design: Jake Rae

Cover Composition: Karen Montgomery

Illustrator: S4Carlisle Publishing Services

To Michela and Silvia, who are stronger and smarter than they
think.

—Dino

To Grandma Concetta, for providing free calories through
amazing quantities of unbeatable homemade prosciutto.

—Francesco

Contents at a glance

Introduction xiii

CHApTer 1 Using Visual Studio 2012 express edition for Windows 8 1

CHApTer 2 Making sense of HTML5 23

CHApTer 3 Making sense of CSS 47

CHApTer 4 Making sense of JavaScript 73

CHApTer 5 First steps with Windows 8 development 97

CHApTer 6 The user interface of Windows Store applications 121

CHApTer 7 Navigating through multimedia content 147

CHApTer 8 States of a Windows 8 application 177

CHApTer 9 Integrating with the Windows 8 environment 201

CHApTer 10 Adding persistent data to applications 235

CHApTer 11 Working with remote data 265

CHApTer 12 Accessing devices and sensors 291

CHApTer 13 Adding Live tiles 319

CHApTer 14 publishing an application 335

Index 351

 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction . xiii

Chapter 1 Using Visual Studio 2012 Express edition
for Windows 8 1

Getting ready for development . 2

The software you need . 2

Configuring Visual Studio 2012 . 5

Start playing with Windows 8 apps . 9

The “Hello Windows 8” application .10

Adding a bit more action .16

Summary. .21

Chapter 2 Making sense of HTML5 23
Elements of a webpage .24

Building the page layout with HTML5 .24

Miscellany of other new elements. .32

Collecting data .34

Adjusting input fields .35

Form submission .38

Multimedia elements . 41

The audio element . 41

The video element .42

Summary. .45

viii Contents

Chapter 3 Making sense of CSS 47
Styling a webpage .47

Adding CSS information to pages .48

Selecting elements to style . 51

Basic style commands .55

Setting colors .55

Controlling text. .58

HTML display modes .60

Spacing and the boxing model .63

Advanced CSS scenarios .66

CSS pseudo-classes .66

Media Queries .70

Summary. .71

Chapter 4 Making sense of JavaScript 73
Language basics . 74

The JavaScript type system. 74

Dealing with variables .77

Dealing with objects .79

Dealing with functions .81

Organizing your own JavaScript code .89

Linking JavaScript code to pages .89

Practices and habits .92

Summary. .94

Chapter 5 First steps with Windows 8 development 97
The Windows 8 Runtime (WinRT) .98

Windows Store apps and other apps .98

An overview of the WinRT API .100

The Windows Store app user interface .102

Aspects of the Windows 8 UI .102

Inspiring principles of the Windows 8 UI .104

 Contents ix

Components for the presentation layer .107

Data binding .112

Understanding the application’s lifecycle .116

States of a Windows Store application .116

Background tasks .119

Summary. .120

Chapter 6 The user interface of Windows Store applications 121
Foundation of Windows Store applications .121

Defining the layout of the application .122

Application attributes .129

Getting serious with the TodoList application .132

Building an interactive form .133

Putting data into the form .138

Summary. .146

Chapter 7 Navigating through multimedia content 147
Foundation of page navigation .147

The navigation model of Windows Store applications147

Inside the Navigation App template .149

Building a gallery of pictures .152

Introducing the FlipView component .152

Navigating to a detail page .156

Zooming the image in and out .161

Building a video clip gallery .165

Introducing the SemanticZoom component165

Dealing with video .172

Summary. 174

Chapter 8 States of a Windows 8 application 177
States of a Windows Store application .177

Full-screen view states .178

x Contents

Snapping applications .179

Making the application reactive .182

Towards an adaptive layout .188

General principles of snapped and filled views 188

Fluid layouts .189

Summary. .200

Chapter 9 Integrating with the Windows 8 environment 201
Contracts and common tasks .202

Aspects of Windows 8 contracts .202

Contracts and extensions .204

Consuming the File picker contract .206

Choosing a file to save data .207

Choosing a file to load data .214

The Share contract .216

Publishing an application’s data .216

Adding share source capabilities to TodoList217

Providing a Settings page .224

Populating the Settings charm .224

Creating a functional Settings page .227

Summary. .233

Chapter 10 Adding persistent data to applications 235
Persisting application objects .235

Making Task objects persistent .236

Choosing a serialization format .240

Creating Task objects from files .243

Using the application’s private storage .247

Storage options in Windows 8 .248

Creating tasks in the isolated storage .251

Summary. .264

 Contents xi

Chapter 11 Working with remote data 265
Working with RSS data .265

Getting remote data .266

Parsing and displaying downloaded data .272

Drilling down into data .276

Working with JSON data .278

Laying out a Flickr viewer .279

Enhancing the application .285

Summary. .290

Chapter 12 Accessing devices and sensors 291
Working with the webcam .291

Capturing the webcam stream .292

Processing captured items .297

Working with the printer .301

The Print contract .301

Printing context-specific content .305

Working with the GPS system .309

Detecting latitude and longitude .309

Making use of geolocation data .312

Summary. .318

Chapter 13 Adding Live tiles 319
What’s a Live tile anyway? .319

Tiles in action .320

Creating Live tiles for a basic application .323

Adding Live tiles to an existing application .326

Bringing back the TodoList application .326

Implementation of Live tiles .328

Summary. .333

xii Contents

Chapter 14 Publishing an application 335
Getting a developer account .336

Registering as a developer of free applications336

Registering as a developer of paid applications339

Steps required to publish an application .340

Choosing a name for the application .340

Packaging an application .342

Sideloaded applications .349

Summary. .349

Index 351

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xiii

Introduction

For years, programming has been the nearly exclusive domain of people that others
typically thought of as super-experts, gurus, or geniuses. The advent of mobile

 programming, however, changed things a bit because the idea of programming for
these devices regained its appeal for youngsters. Today, a teenager appearing suddenly
in the spotlight due to his or her ability to build a cool Android or iPhone app is not
 uncommon. There are a few reasons why this is happening, and why it’s happening
now.

One reason is certainly that today’s teenagers are the first generation of digital
 natives. You’re far more likely to find a few programmers among this group than among
the members of previous generations. Another reason is that mobile apps are much
easier to write than any other type of modern software. Mobile apps are small pieces of
code built around a smart idea. It’s one thing to build a mobile app, and quite another
to plan and maintain a multitiered enterprise system.

Being mobile added a new dimension to software development. In this context,
Windows Phone is not simply yet another mobile platform to code for; It is by far the
simplest (and even most pleasant) platform to code for, regardless of background. This
makes coding for Windows Phone an excellent way to get started with programming.
This is particularly true for the smart kids who constantly hunger after new technology
and seek emotional gratification in that technology. I’ve seen this happen with my
14-year-old son, Francesco—who is the effective coauthor of this book.

Microsoft Windows 8 takes the “programming with pleasure” approach one step
further. With Windows 8, you can not only build mobile apps for tablets, but also
build standalone applications for yourself, either for fun or to help automate some of
the repetitive tasks of everyday life. Windows 8, with its overall simplicity, brings back
a dimension of craftsmanship in applications that went missing as the complexity of
software architectures and websites increased over the past decade or so. On one hand,
Windows 8 is a powerful client front end for rich and sophisticated middleware; on the
other, it is simple enough for nearly everybody to program via HTML5 and JavaScript.

This book is intended as a quick (but juicy) beginner’s guide for getting started
 crafting Windows 8 applications, and how to publish and sell them through the
Windows Store. The key point of this book is to make it clear that if you have a good
idea and are a quick learner, you can create a Windows 8 app regardless of your age
or programming background. You’ll see how to write functional applications for the
new Microsoft operating system and have them run on desktop computers, as well as

xiv Introduction

tablets. As evidence, consider that Francesco is a teenager—and he wrote most of the
examples and a few chapters of this book.

After completing the book, you won’t be a super-expert, but you’ll surely know
enough to start writing your own apps, at least for fun.

Who should read this book

This book is a beginner’s guide to Windows 8 programming using web technologies,
such as HTML5 and JavaScript. But the scope of the word “beginner” needs some
further explanation. One definition of a beginner, in a programming sense, is a person
who has never learned any serious programming. While this book does target such
 beginners, it does require some minimal background knowledge about HTML5,
 JavaScript, and some familiarity with basic concepts of logic and formalism, such as
IF, WHILE, and assignments. Another definition of a beginner, however, would include
people who have never learned Windows programming, or people who perhaps wrote
COBOL for decades—or even perhaps a person who built and maintained a Visual Basic
6 application for the past 15 years. While this book can also be useful for those more
experienced “beginners,” people with serious programming experience are not the
target audience for this book.

This book attempts to provide a smooth approach to key topics of Windows 8
programming. If you are primarily interested in Windows 8 and are new to Windows
Phone, Microsoft Silverlight, or even single-page applications, then you should
 definitely consider getting this book.

Who should not read this book

This book won’t make you a top-notch Windows 8 developer. If you have some
solid experience with Windows 8, with Windows Phone or Silverlight, or with other
 programming languages, then you might want to try another, more advanced book
instead, or just rely on online MSDN documentation or StackOverflow links. You should
be a true Windows 8 beginner to enjoy this book.

 Introduction xv

Organization of this book

This book is divided into three sections. Chapters 1-5 cover the basics of acquiring and
using Microsoft Visual Studio 2012 Express and also provide a summary of what you
need to know about HTML, CSS, and JavaScript. Chapters 6-11 deal with programming
Windows 8 apps and cover the foundation of Windows 8 programming while providing
step-by-step exercises that help you understand and deal with the user interface of
Windows 8 apps, graphics, video, data storage, and Internet calls. Finally, Chapters 12-14
focus on advanced Windows 8 programming, with an emphasis on working with device
sensors and accessories (such as printers, GPS, webcams, and so forth), interacting with
the system (Live tiles), and publishing your completed application.

Finding your best starting point in this book
Overall, the scenarios for using this book are quite simple. We recommend you read it
cover to cover, because it is designed to guide you through the key topics you need to
know to program Windows 8 with HTML5 and JavaScript. However, if you already have
a solid grasp of the technologies used in this book—Visual Studio 2012 Express, HTML5,
CSS, and JavaScript—you may be able to skip Chapters 1-4 without compromising your
understanding of the rest of the book.

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (such as, File | Close), means
that you should select the first menu or menu item, then the next, and so on.

xvi Introduction

System requirements

You will need the following hardware and software to set up yourself on the various
mobile platforms and compile the sample code:

■■ A PC equipped with Windows 8 and Visual Studio 2012 Express for Windows 8.

Code samples

Most of the chapters in this book are built around exercises that are reflected in
the sample code for the chapter. All sample projects in their finalized form can be
 downloaded from the following page:

http://aka.ms/SH_W8AppsHTML5JS/files

Follow the instructions to download the starthere-buildapps-winjs-sources.zip file.

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the starthere-buildapps-winjs-sources.zip file that you downloaded from
the book’s website (name a specific directory along with directions to create it,
if necessary).

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the starthere-buildapps-winjs-
sources.zip file.

 Introduction xvii

Errata and book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site at oreilly.com:

http://aka.ms/SH_W8AppsHTML5JS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey

 xix

Acknowledgements

Dino:

I’ll be honest: Russell Jones, my editor at O’Reilly Media, convinced me to try this
project. If the book is in your hands, both some of the good and some of the bad are
on him! When Russell first mentioned this book, when it was still just an idea, I first
declined, making the point that I have never written a book for beginners.

But then my son, Francesco (proud and efficient coauthor), made me look at the
subject from a different perspective. It was one of those powerful forms of lateral
thinking that only young people can sometimes contribute. Francesco said something
like, “Dad, I don’t think you only admit experts to your software design or ASP.NET
MVC classes. If I were a true expert, I’d probably rarely take a class; if I need a class it is
because I want someone to show me the way slowly and effectively. If I decide to invest
money on a class it is because I feel somehow that I’m a beginner. Why should this be
different for a book?”

That message hit home; I found that to be a valuable bit of wisdom; even coming
from a 14-year-old boy.

So with that change of heart, I embarked enthusiastically on this project and asked
Francesco to cooperate, because he was perfect for testing the material—essentially
eating the dog food we were cooking up! Francesco did a truly fantastic job. At one
point, I was on a plane about to leave and talking on the phone, giving suggestions on
how to improve the gallery of photos and the downloading of JSON data from Flickr.
From the outside, that phone call was nothing more than a classic business phone
call—the last-minute kind you make just moments before the plane leaves the gate. But
I was talking to my son! And, more importantly, he had diligently accomplished all the
tasks by the time I got back. Thank you, Francesco!

Francesco:

I love technology and love the Microsoft software platform and tooling. In the
beginning, for me, writing the book was primarily a way to get my hands on a Surface
device. In the end, though, I spent most of the time working with the simulator and a
secondary laptop.

Dad told me that exploring a technology near its birth is usually quite difficult,
because you can’t always rely on documentation or good examples being available.
Frankly, to me that just sounded like one of those excuses that parents trot out when
they’re unable to do something themselves. Not knowing it might be hard, I just rolled

xx Acknowledgements

up my sleeves and worked out some examples. And in doing so, I also was able to
 contribute a list of points for Dad to expand on. I’m not sure this project would have
been as pleasant for Dad without my help.

Working on the book was mostly fun, but I do recognize that this book is an
 important achievement for me. I know I’ll feel better if I can share this moment with
some people who make my life happier: my mom, my sister, Michela, my friends
 Francesco and Mattia, and all my waterpolo teammates at UISP Monterotondo. I love
you all!

PS: Michela, do you remember that Christmas of 2009 when I was really giving you a
hard time and in order to “save” you, Dad decided to initiate (or actually initialize?) me
to programming?

 1

Chapter 1

Using Visual Studio
2012 express edition for
Windows 8

Differences of habit and language are nothing at all if our aims are identical.
— J. K. Rowling, Harry Potter and the Goblet of Fire

Microsoft Windows 8 marks the debut of a significantly revised runtime platform—the Windows
RunTime (WinRT) platform. Like the .NET platform, WinRT supports several programming

 languages. You will find a pleasant surprise (and an old acquaintance) side by side with the popular
.NET languages (such as, C#, Visual Basic, C++, F#)—the JavaScript language.

Note You may not even recall that a decade ago, when Microsoft first shipped the .NET
Framework, developers were also given a chance to write applications using an adapted
version of JavaScript called JScript .NET. It was not exactly a success; indeed, today you
won’t even find JScript .NET supported in Visual Studio—the premiere development
 environment for .NET code. Ten years ago, JavaScript was probably close to the bottom of
its popularity. JScript .NET was a dialect of the standard JavaScript, and using JScript .NET
didn’t mean you could use HTML and CSS to shape up the user interface of the resulting
application. This is different in Windows 8.

Building Windows 8 applications with JavaScript means that you define the layout of the user
interface with HTML and add style and graphics using CSS. As for the application’s logic, you use
the standard JavaScript language enriched by any JavaScript libraries you wish (such as the common
jQuery library), while you access WinRT system classes using an ad hoc Microsoft-created JavaScript
wrapper—the WinJs library.

2 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

If you already know a bit of JavaScript development, building Windows 8 applications will not be
a huge, new type of adventure. If you are not already a JavaScript developer, the JavaScript route
 probably represents the shortest path for learning to build Windows 8 applications.

This chapter sets up the preliminary aspects of such a learning path and discusses what you
need to install—specifically Windows 8 and Microsoft Visual Studio—and how to configure the
 environment. In the next chapters you’ll first see a summary of HTML (in particular, the latest version
of HTML, known as HTML5), CSS, and JavaScript, and then attack the task of building Windows 8
 applications with topics more specifically related to Windows 8 programming.

Important If you are already familiar with HTML5, CSS, and JavaScript, you might want to
start directly with Chapter 5. If not, at the very minimum I recommend you look carefully
at Chapters 2, 3, and 4. Better yet, I suggest you look into specific books for HTML5 and
JavaScript, as the chapters you find here represent about 10 percent of the content you
would find in a dedicated book. You might want to explore other books in this Microsoft
Press series that address these topics directly: Start Here! Learn HTML5 by Faithe Wempen
(Microsoft Press, 2012) and Start Here! Learn JavaScript by Steve Suehring (Microsoft Press,
2012).

Getting ready for development

So you want to start building applications for Windows 8 using HTML, CSS, and JavaScript. First, you
need to make sure that some software is properly installed on your development machine. The following
 section discusses the details.

The software you need
As obvious as it may sound, you need to have Windows 8 installed to develop, test, and run Windows
8 applications. The easiest way to develop and test applications for Windows 8 is by using the current
version of Visual Studio—Visual Studio 2012.

There are various editions of both Windows 8 and Visual Studio 2012, but for the purposes of this
book, you’ll need at least the minimal versions of each product: Windows 8 Basic edition and the free
Visual Studio 2012 Express edition for Windows 8 applications.

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 3

Installing Windows 8
Having a machine equipped with Windows 8 is a fundamental prerequisite to working through the
information and exercises in this book. Windows 8 comes in a few flavors, as detailed in Table 1-1.

TABLE 1-1 Windows 8 editions

Version Description

Windows 8 The Basic edition of Windows 8 is available for both the x86 and x86-64
 architecture. It provides a new Start screen and redesigned user interface, live
tiles, Internet Explorer 10, and more.

Windows 8 Pro This edition offers additional features such as booting from VHD and support for
virtualization via Hyper-V.

Windows 8 Enterprise This edition adds IT-related capabilities such AppLocker and Windows-To-Go
(booting and running from a USB drive). This version also supports installation of
internally developed applications from locations other than the Windows Store.

Windows 8 RT Only available pre-installed on ARM-based tablets, it also natively includes
touch-optimized versions of main Office 2013 applications.

If you don’t have your copy of Windows 8 already, you can get a free 90-day trial version from the
following location: http://msdn.microsoft.com/en-us/evalcenter/jj554510.aspx. Note that this link gets
you a non-upgradeable copy of Windows 8 Enterprise. Before you embark on the download, consider
that because it is a few gigabytes in size, it may not be quick!

Installing Visual Studio express
Once you have Windows 8 installed, you can proceed to download Visual Studio 2012 Express edition.
(Note that in the rest of the chapter—and the entire book—we’ll be using the term Visual Studio or
Visual Studio 2012 often just to mean the Visual Studio 2012 Express edition.) As shown in Table 1-2,
Visual Studio is available in different flavors.

TABLE 1-2 Visual Studio 2012 editions

Version Description

Ultimate The feature-complete version of Visual Studio 2012, offering the top-quality
 support for every feature.

Premium Lacks some extensions in the area of modeling, debugging, and testing.

Professional Lacks even more functionalities in the area of modeling, debugging, and testing
but still offers a great environment to write and test code.

Express Free but basic version of Visual Studio 2012 optimized for specific development
scenarios. In particular, it is available for building web applications or Windows 8
applications.

You can read more about and compare Visual Studio features at the following page:
http://www.microsoft.com/visualstudio/11/en-us/products/compare.

To start downloading Visual Studio Express for Windows 8, go to the Dev Center for Windows 8
applications at http://msdn.microsoft.com/en-us/windows/apps (see Figure 1-1).

4 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 1-1 The home page of the Dev Center for Windows 8 applications.

After clicking the link to download the tools and Software Development Kit (SDK), you will be sent
to another page where you can finally start the download process, as shown in Figure 1-2.

FIGURE 1-2 Downloading the tools for Windows 8 application programming.

Note that you can choose to save the setup program to your local disk or you can run it directly.
If you plan to reuse the program on different machines, it could be useful to save it to a known
 location first.

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 5

At various times during the setup, you’ll be prompted to accept or modify options. For the
 purposes of this book, you can simply accept all the default options. The default setup installs the
newest .NET Framework 4.5, the Windows 8 SDK, plus a bunch of other tools and project templates.
At the end of the installation, if everything worked just fine, you should expect to see the screen
 reproduced in Figure 1-3. In the unfortunate case in which the software doesn’t install correctly, you
will get a message with some helpful directions. Please follow them carefully.

FIGURE 1-3 Visual Studio 2012 is ready to launch.

Now you’re ready for some real fun: launching and configuring Visual Studio for your first
 Windows 8 application!

Configuring Visual Studio 2012
After completing the setup, Visual Studio 2012 Express requires a couple of more steps before it is
ready to run.

Getting a product key
Upon launching for the first time, Visual Studio 2012 requires that you activate your copy. This
 happens through a screen like the one shown in Figure 1-4.

6 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 1-4 Product key required for Visual Studio 2012 Express.

Clicking the “Register online” link takes you to a page where you can insert your name, email
 address, and company details (see Figure 1-5).

FIGURE 1-5 Registration required for Visual Studio 2012 Express.

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 7

You then submit the form. You’ll receive an email containing the product key to unlock the current
version of Visual Studio (see Figure 1-6).

FIGURE 1-6 Product key retrieval for Visual Studio 2012 Express.

It usually takes only a few seconds to receive an email from Microsoft to your specified address.
The email contains the product key as text; copy it to the clipboard and switch back to Visual Studio.
In the same window you saw in Figure 1-4, paste the product key you just received.

Creating a developer account
To write and test Windows 8 applications, you need a developer license from Microsoft. The license is
free and entitles you to be a registered Microsoft developer. Getting such a license requires only that
you sign in using your Windows Live ID, as shown in Figure 1-7. (If you don’t have a Windows Live ID,
the dialog box that prompts you to enter it provides a quick “Sign Up” link.)

8 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 1-7 Creating your developer account.

A developer license successfully installed on a machine enables you to freely create and run
 Windows 8 applications outside the official Windows Store.

Note A Windows 8 machine can install only certified applications, either downloaded
from the Windows Store (in much the same way in which it works for Windows Phone
 applications), or created by registered developers on a “signed” machine, so you’ll need the
developer license to complete the examples in this book.

You won’t receive any further warning from the system until the developer license expires or you
remove it from the machine. If your license expires, you can renew it directly from the Visual Studio
environment. To renew a license, users of Visual Studio Express click the Store menu and then select
Acquire Developer License, as shown in Figure 1-8.

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 9

FIGURE 1-8 Renewing your developer license.

You can get as many developer licenses as you need, provided that you have a Windows Live ID
account.

Windows Store account
Getting a developer license for Windows 8 is only the first mandatory step in developing and testing
Windows 8 applications. Armed solely with a developer account, you can’t publish a Windows 8
 application to the Windows Store for others to download and install.

There’s no direct relationship between developer accounts and Windows Store accounts. Each
plays a specific role and you can get one without having the other. However, if you own a Windows
Store account and then qualify for a developer license, then the default expiration of your developer
license is automatically set to a longer time.

The point to remember here is that before you can publish your Windows 8 application to the
Windows Store, you need to get a Windows Store account. You’ll see how to obtain a Windows Store
account later, in Chapter 14.

Important As a developer and user of a Windows 8 system, keep in mind that your
 machine can only run Windows 8 applications that have been downloaded from the
Windows Store or custom applications for which a developer license has been installed
on the machine. Another scenario enables you to host custom applications—when those
 applications have been “sideloaded” onto the machine by your organization, which in turn
holds an enterprise store account.

Start playing with Windows 8 apps
With a developer license installed on your Windows 8 machine, you’re now ready to play with
Windows 8 applications. When you are about to create a brand new project, you must first choose a
project template and a programming language. After you do that, Visual Studio provides some help

10 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

by generating some vanilla code appropriate to that template and language that you can customize
and extend.

For the purposes of this book, your programming language of choice is JavaScript. It’s worth
 remembering, though, that you could use other languages, such as C#, Visual Basic, and even C++.

The “Hello Windows 8” application
Without further ado, launch Visual Studio and discover what it takes to create a new project.
It couldn’t be simpler, actually; from the start page, you just click the New Project link, as shown in
Figure 1-9.

FIGURE 1-9 Creating a new project.

Choosing a project template
Visual Studio offers a few predefined templates for your new project, but choosing the project
 template only appears to be an easy task. It requires that you have a reasonably clear idea of the final
result you want to achieve. The template you truly want to use depends on the interaction model you
have in mind, the graphics, and the content you need to work on. Figure 1-10 shows the New Project
window you will see after electing to create a new project.

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 11

FIGURE 1-10 Choosing a project template.

Templates are grouped by programming language. In the Express edition of Visual Studio
 considered here, you can create just one type of application—a Windows 8 application for the
 Windows Store. If you acquire a more advanced edition of Visual Studio, you should expect to see
more options available, including web, console, and desktop applications.

So how do you decide which template to use?

Templates have the primary purpose of saving you some work, at least for common application
layouts. You are not forced to pick up a specific template, however. If none of the predefined
 templates seems to be right for you or, more likely, if you don’t know exactly which one to pick, then
you just select the template for a blank application. Table 1-3 provides more information on the
 predefined templates for JavaScript.

TABLE 1-3 Predefined project templates for Windows Store applications

Template Description

Blank App The application consists of a single and nearly empty page: no visual controls, no
widgets, and no layout defined.

Grid App A master-detail application made of three pages. The master page groups items
in a grid. Additional pages provide details on groups and individual items.

Split App A two-page master-detail application in which the master page shows selectable
items and the details page lists related items alongside.

Fixed Layout App A single-page application whose layout scales using a fixed aspect ratio.

Navigation App A multipage application with predefined controls to navigate between pages.

For the purposes of this book, the easiest is starting with a brand new blank application. You’ll
experiment with other types of templates in the upcoming chapters.

12 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Creating the sample project
Before you give Visual Studio the green light to create files, you might want to spend some time
thinking about the location of the project. In Figure 1-10, you see Location; that’s the place where you
enter the disk path to the files being created for the project.

It is always preferable to save your sample applications in a well-organized structure. For the
sample code of this book, you’ll use a root directory named Win8 containing ChXX directories for
each chapter, where XX is a two-digit chapter number.

By default, Visual Studio saves your project files right under the Documents folder and creates a
new directory for each solution. You can change the default location of a project by simply editing
the path in the Location every time. Alternatively, you can set a new default path for every project by
selecting Options from the Tools menu and then picking up the General node under the Projects and
Solutions element (see Figure 1-11).

FIGURE 1-11 Changing the default project location.

For the “Hello Windows 8” application, you’ll create a new blank application project named
 HelloWin8 in the Win8/Ch01 folder, as shown in Figure 1-12.

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 13

FIGURE 1-12 Creating the HelloWin8 project.

Click OK and you’re officially a Windows 8 developer.

Note Visual Studio 2012 comes with a dark theme for windows and controls by default. For
the sake of print, we changed it to the light theme which makes for screenshots that render
better in print. Anyway, to change the Visual Studio theme, open the Tools | Options menu,
and then select Environment from the window shown in Figure 1-11.

Tweaking the sample project
Right after creation, the HelloWin8 project looks like the image shown in Figure 1-13. It references the
Windows Library for JavaScript (under the References folder) and is centered on a HTML page named
default.html. This page defines the entire user interface of the application and links a Cascading Style
Sheet (CSS) file (css/default.css) for graphics and a JavaScript file for the logic that loads up the page
content and provides any expected behavior (js/default.js). Just the default.js file is opened in Visual
Studio by default.

14 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 1-13 The HelloWin8 project.

It turns out that a Windows 8 application written using JavaScript looks like a self-contained web
application made of HTML pages properly styled using CSS and powered by JavaScript logic. If you
are familiar with the web paradigm and client-side web development, then you only need to make
sense of the Windows 8-specific application programming interface (API) exposed to you via a few
JavaScript files to link.

Before compiling the project to see what happens, let’s make some minimal change: Close
the default.js file and open up the default.html file, which is responsible for the home page of the
 application (see Figure 1-14). To open a file that is part of the current project, you locate the file by
name in the Solution Explorer panel and then double-click it. In general, if you need to open a file
that is not included in the project for your reference, then you might want to use the Open item on
the File menu.

FIGURE 1-14 Opening default.html.

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 15

The body of the sample HTML page is all here:

<body>

 <p>Content goes here</p>

</body>

Let’s just replace the placeholder text with some custom text. For example:

<body>

 <p> Hello, Windows 8!<p>

</body>

In HTML, the <body> element indicates the entire content of a page. The <p> element, instead,
defines a paragraph of text. The net effect of the change is making the page display the text “Hello,
Windows 8.”

The next step is building the application and admiring it in action live.

Admiring the app in action
To build the application, you hit F5 or click Build | Start Debugging. Debugging is the action of finding
and fixing errors in computer programs. However, the sequence Build+Debugging more generally
 refers to giving the application a try. You launch the application and interact with it to see if it
 behaves as you expect.

For an even quicker start, you can click the Play button in the toolbar, as shown in Figure 1-15.

FIGURE 1-15 Starting the debug of the application.

Note that Local Machine is only the default choice where you can choose to run the application.
By selecting it, you open up a menu with various options. Running the application on the local
 machine means switching from the Windows classic desktop mode (where you execute Visual Studio)
to the specific UI of Windows 8. If you don’t like doing that, you can run applications in a simulator.
Using the simulator is helpful for testing the application using various screen orientations and
 resolutions. Finally, you can even run the application on a remote machine, provided that you have
sufficient rights to access that machine.

16 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The Debug option in Figure 1-15 refers to the way in which the compiler produces the code.
In debug mode, the binaries include additional information that allows you to set breakpoints on
 specific lines of code and proceed step by step. A breakpoint is a line of code where execution will
pause. You typically use breakpoints to stop execution at a given point and investigate the state of
the application and its internal data. You can have multiple breakpoints in the program. The Release
mode is required for finished applications ready for distribution. In the book, you’ll be using the
 Debug mode predominantly.

Figure 1-16 shows the application in action on the local machine.

FIGURE 1-16 The HelloWin8 app in action.

If you run the application in the simulator, then the application runs in a separate window you
can control at will. When you run it on the local machine, then the app runs full screen and it is not
 immediately apparent what you need to do to get back to Visual Studio to terminate the app. Here’s
how to exit the application: move the mouse towards the left border until you see a window icon to
click to return to the desktop mode. To terminate the app, you then click the Stop button that has
replaced the Play button in the Visual Studio user interface.

You’re done. But it was way too simple, wasn’t it? So let’s make the sample application more
 colorful and add a bit of action too.

Adding a bit more action
Create a new project and name it HelloWin8-Step2. First, you’ll make it more colorful by simply
adding more HTML elements and style information. Next, you will transform it into a simple but fully
functional application that generates a random number.

Adding style to the page
Open up the default.html page and edit its body tag. The body should now include title and subtitle
separated with a line. You use a couple of HTML5 elements for this. Note that in the next chapter
you’ll learn a lot more about HTML5. Here’s the modified body of the page:

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 17

<body>

 <header>

 Start Here! Build Windows 8 Applications with HTML5 and

JavaScript

 <hr />

 </header>

 <footer>

 <hr />

 Dino Esposito | Francesco Esposito

 </footer>

</body>

Now let’s proceed with colors and fonts. The style of the page is defined in the default.css file from
the CSS folder. By editing a CSS file, you can change nearly everything in a HTML page that has to do
with appearance and layout. You’ll find a summary of what’s important to know about CSS in Chapter 3,
“Making sense of CSS.”

In the default.css file, you initially find something like below:

body {

}

This code describes the style to be applied to the tag body of any page that links the CSS file. You
can edit the CSS file manually or you can create CSS styles using a builder tool available in Visual
 Studio. To use the tool, right-click a CSS element (that is, body) and select Build Style, as shown in
Figure 1-17.

FIGURE 1-17 Editing the style of the page.

18 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Here’s a modified style for the page body that changes the background color and adds a bit of
space around the content:

body {

 background-color: #1649AD;

 padding: 10px;

}

You can also customize the header and footer elements slightly to define the color of the text, font
size, and a vertical offset, as shown below:

header {

 font-size: x-large;

 color: #ffffff;

 padding-bottom: 50px;

}

footer {

 font-size: large;

 color: #eeee00;

 padding-top: 50px;

}

Now run the application and be proud of it! (See Figure 1-18.)

FIGURE 1-18 The application running with a modified style.

Generating a random number
So far the application has no behavior at all and is limited to displaying some static text. Let’s make
it a bit less obvious and add any necessary structure and logic to make it generate and display a
random number.

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 19

First off, add the following markup to the body of the page in default.html. The markup consists of
two DIV blocks containing the placeholder for generated number and the button to click to get a new
number. You insert the following markup between the header and footer elements:

<div>

 <label id="numberLabel">?</label>

</div>

<div>

 <input id="numberButton" type="button" value="Get number" />

</div>

Next, open the default.js file and add the following JavaScript functions at the bottom of the file:

function numberButtonClick() {

 var number = generateNumber();

 document.getElementById("number").innerHTML = number;

}

function generateNumber() {

 var number = 1 + Math.floor(Math.random() * 1000);

 return number;

}

The first function is the handler for the click event on the button. The second function just
 generates and returns a random number between 1 and 1000. The final step consists of binding the
click handler to the actual button in the HTML markup. There are a number of ways to do this, the
simplest of which is shown below:

<input id="numberButton" type="button" value="Get number"

 onclick="numberButtonClick()" />

A more elegant way—and the recommended way of doing it in Windows 8 programming—
consists of making the binding dynamically as the page is loaded. So open the default.js file and
modify the code of the app.onactivated function, as shown below:

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // TODO: This application has been newly launched. Initialize

 // your application here.

 document.getElementById("numberButton").addEventListener(

 "click", numberButtonClick)

 } else {

 // TODO: This application has been reactivated from suspension.

 // Restore application state here.

20 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 }

 args.setPromise(WinJS.UI.processAll());

 }

};

In the end, you just add one line to run when the application has been newly launched. The line
just registers a handler for any click event raised by the specified button.

You can give the final touch to the application with a second pass on CSS to adjust the rendering
of the label and button. Add the following to the default.css file:

#numberButton {

 font-size: x-large;

}

#numberLabel {

 font-size: xx-large;

 color: #eeee00;

 font-weight: bold;

}

The leading pound (#) symbol indicates that the style applies to any HTML element whose ID
matches the name—for example, the style defined as #numberButton applies to all elements with an
ID of numberButton. Figure 1-19 shows the modified application in action.

FIGURE 1-19 A Windows 8 application to get random numbers.

Although this is still a fairly simple application, it should be enough to get you started and to give
you the overall feeling of how you approach Windows 8 programming with HTML5 and JavaScript.
You’ll start building more sophisticated applications in Chapter 5, “First steps with Windows 8
 development.”

 CHAPTER 1 Using Visual Studio 2012 Express edition for Windows 8 21

Summary

This chapter provided a step-by-step guide to getting ready for Windows 8 programming. You
started with the operating system and tools necessary for writing code, then installed and configured
Visual Studio 2012 Express edition for Windows 8, and finally played a bit with the simplest type of
application.

Before digging into more Windows 8 development, it is necessary to ensure that everybody
 reading this book is aligned to a minimum level of knowledge of web technologies such as HTML5,
CSS, and JavaScript. Therefore, the next three chapters provide a summary of what you need to know
about HTML5, CSS, and JavaScript to successfully work through the later chapters. If you feel you
already know enough, then feel free to jump directly to Chapter 5. If the later chapters prove too
 difficult, I recommend you review Chapters 2–4 and/or brush up your knowledge with other resources
on HTML5, JavaScript, and CSS.

 23

Chapter 2

Making sense of HTML5

Broadly speaking, the short words are the best, and the old words best of all.
—Winston Churchill

HTML5 is the latest version of the HTML language—the popular text-based language used
to define the content of webpages. HTML appeared on the scene in the early 1990s. In the

 beginning it was merely a markup language apt at describing simple documents. A markup language
is a language based on a set of markers that wrap text and give it a special meaning.

Initially, the set of HTML markup elements, called “tags” or (better) “elements,” was fairly limited.
It contained elements to define references to other documents and headings, to link to images
and paragraphs, and apply basic text styling such as bold or italic. Over the years, however, the
role of HTML grew beyond imagination, progressing from being a simple language that described
 documents to a language used to define the user interface of web applications. That trend continues
today with HTML5.

The latest version of HTML5 removes some of the older elements and makes it easier to keep
elements that provide style information in one place, and elements that provide text and define the
layout of the text, in another place. As you’ll see in more detail in the next chapter, style information
can be defined through a special distinct file known as a Cascading Style Sheet (CSS). In addition,
HTML5 adds some new elements suitable for including multimedia content and drawing, and several
new frameworks for manipulating the content of the page programmatically.

With HTML5 alone, you still won’t be able to go too far toward building a complete application.
However, the union of HTML5, CSS, and JavaScript functions as a close approximation to a full
 programming language.

■■ You use HTML5 to define the layout of the user interface and to insert text and multimedia.

■■ You use CSS to add colors, style, and shiny finishes.

■■ Finally, you use JavaScript to add behavior by gluing together pieces of native frameworks
such as Document Object Model (DOM), local storage, geolocation and, for example, all the
specific services of Windows 8 exposed via the Windows 8 JavaScript library (WinJs). The DOM,

24 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

in particular, is the collection of programmable objects that expose the structure of the current
document to coders.

In the rest of this chapter, you’ll briefly explore the basics of the HTML5 markup elements,
 including input forms and multimedia. Neither this chapter nor the rest of the book covers every
aspect of the basics of HTML. If you need a refresher on the fundamentals of HTML, you can refer to
the book Start Here! Learn HTML5, by Faithe Wempen (Microsoft Press, 2012).

Important This chapter and the next two provide an overview of HTML, CSS, and
JavaScript. In these chapters, you’ll get acquainted with new key elements of HTML5 and
CSS3 and receive an end-to-end coverage of common programming techniques you use
in JavaScript. The content of these chapters is not specific to Windows 8 apps; it is instead
meant to be preliminary to upcoming chapters where you’ll be using ad hoc elements
from the WinJs library in a basic HTML skeleton, using custom CSS for graphics and custom
JavaScript for behavior.

Elements of a webpage

HTML5 comes about a decade after its most recent predecessor (HTML4). Looking at what’s new in
HTML5, one could reasonably say that all these years have not passed in vain. HTML5 provides a set
of new elements that offer several native functionalities that developers and designers used to have
to code via artifacts and ingenious combinations of existing elements. Here’s a quick look at what’s
relevant to creating a webpage with HTML5.

Building the page layout with HTML5
In the beginning of the web, most pages were designed as a text documents—meaning that their
content developed vertically on a single logical column. Over the years, page layout became more
and more sophisticated. Today, two-column and three-column layouts are much more common.
In two- and three-column layouts, you also often find headers and footers surrounding the logical
 columns. Figure 2-1 shows the difference between the layouts at a glance.

 CHAPTER 2 Making sense of HTML5 25

FIGURE 2-1 Different HTML page layouts.

Developers have been smart enough to build such complex layouts using basic HTML block
 elements such as DIV.

Note In HTML, a block element is an element whose content is rendered between two line
breaks—one before and one after the content. Therefore, the content displays as a stand-
alone “block” of content. One popular block element is H1, which renders some text as a
first-level heading. The DIV element is another popular block element aimed at creating
blocks out of any valid HTML content. Block elements are opposed to inline elements,
namely elements whose content flows with the rest of the page with no line breaks applied.

Important Note that in this book, as well as in other books and articles, truly common
HTML elements, such as <div> and <h1> often appear in text written without the brackets.
However, the use of the angle brackets is mandatory if you are using those elements within
HTML itself.

In HTML5, the multicolumn layout is recognized as a common layout and therefore gets full
 support via several new ad hoc markup elements.

preparing the sample application
The examples you’ll be working with in this chapter are plain HTML pages showcasing some of
the features available in HTML5 as supported in Internet Explorer 10. You won’t be creating an ad
hoc Windows 8 application for each feature, but for this early example—to refresh what you saw
in Chapter 1, “Using Visual Studio 2012 Express edition for Windows 8”—go ahead and create a
 container Windows 8 page that ties together all the links to the various standalone HTML5 pages.

26 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Open up Visual Studio and create a new blank application. Name it Html5-Demos. When done,
add the following code to the body of default.html so that it serves as the main menu for navigating
into all of the sample HTML5 pages you’ll write throughout the chapter.

<body>

 <header>

 Start Here! Build Windows 8 Applications with HTML5 and

JavaScript

 <hr />

 HTML5 samples

 </header>

 <div id="links">

 MULTI

 <!-- Add here more links to HTML pages as we proceed in the chapter. -->

 </div>

 <footer>

 <hr />

 Dino Esposito | Francesco Esposito

 </footer>

</body>

Figure 2-2 shows the aspect of the resulting application. By clicking the links (such as, the MULTI
link in the figure below) you force the operating system to open the webpage into Internet Explorer
10—the native browser in Windows 8.

FIGURE 2-2 The home page of the sample application for this chapter.

From now on, you’ll be creating plain HTML5 pages and adding an anchor tag <a> to the body of
default.html.

 CHAPTER 2 Making sense of HTML5 27

From generic blocks to semantic elements
A large share of websites out there have a common layout that includes header and footer, as well as
a navigation bar on the left of the page. More often than not, these results are achieved by using DIV
elements styled to align to the left or the right.

Let’s add a new HTML page to the project: right-click the project node in Solution Explorer and
choose Add | New Item from the subsequent flyout menu. What you get next is the window shown in
Figure 2-3. From that window, you then choose a new HTML page and save it as multi.html.

FIGURE 2-3 Creating a new HTML page in Visual Studio.

Next, from within Visual Studio double-click the newly created HTML page and replace the content
with the following markup.

<!DOCTYPE html>

<html>

 <head>

 <title>MULTI-COLUMN LAYOUT</title>

 </head>

 <body>

 Back

 <hr />

 <div id="page">

 <div id="header">

 Header of the page

 <hr />

 </div>

 <div id="navigation-bar">

28 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 Home

 Find us

 Job opportunities

 </div>

 <div id="container">

 <div id="left-sidebar">

 Left sidebar

 Article #1

 Article #2

 Article #3

 </div>

 <div id="content">

 This is the main content of the page

 </div>

 <div id="right-sidebar">

 Right sidebar

 </div>

 </div>

 <div id="footer">

 <hr />

 Footer of the page

 </div>

 </div>

 </body>

</html>

The id attribute of the DIV elements are given self-explanatory names that help with understand-
ing their intended role. Therefore, the HTML page includes header, navigation bar, footer, and a
three-column layout in between the element named container. Figure 2-4 shows how multi.html
renders on Internet Explorer.

 CHAPTER 2 Making sense of HTML5 29

FIGURE 2-4 The multi.html page as it is rendered by Internet Explorer 10.

The preceding markup alone, however, doesn’t produce the expected results and the page doesn’t
really show any multicolumn layout. For that, you need to add ad hoc graphic styles to individual DIV
elements to make them float and anchor to the left or right edge. You add graphic style to an HTML
page using CSS markup, placed in a CSS file. The next chapter provides a quick summary of CSS. The
real point of this demo is a little different.

As you can see, each DIV element is made distinguishable from others only by the name of the id
attribute. Yet, each DIV element plays a clear role that makes it fairly different from others—header is
different from footer, and both are different from left or right sidebars.

Header and footer elements
HTML5 brings a selection of new block elements with specific names and clear behavior. The set of
new elements was determined by looking at the most common layouts used by page authors. For
example, in HTML5 header and footer are new plain block elements you use to indicate a header and
footer. Similar elements exist for most of the semantic elements in the previous listing. Here’s how you
can rewrite the page multi.html using only HTML5-specific elements. Name this page multi5.html.
The listing below shows the content of the body tag for the new page.

<header>

 Header of the page

 <hr />

</header>

<nav>

 Home

 Find us

 Job opportunities

</nav>

<article>

 <aside>

 Left sidebar

30 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 Article #1

 Article #2

 Article #3

 </aside>

 <article>

 <h1>Article #1</h1>

 <hr />

 <section> Introduction </section>

 <section> First section </section>

 <section> Second section </section>

 </article>

 <aside>

 Right sidebar

 </aside>

</article>

<footer>

 <hr />

 Footer of the page

</footer>

You can insert header and footer using specific elements with a very simple syntax, as below:

<header> Markup </header>

<footer> Markup </footer>

It is interesting to notice that you can have multiple header and footer elements in a HTML5 page.
The most common use is to give the page a header and footer. However, you should consider these
elements as blocks meant to represent heading content of a page or a section of a page and footers.

Section and article elements
HTML5 defines two similar-looking elements to represent the content of a page. The <section>
 element is slightly more generic, as it is meant to delimit a logical section of a HTML page. A logical
section can be the content of a tab in a page designed as a collection of tabs.

At the same time, a logical section can also be a portion of the main content being displayed in
the page. In this case, the section element is likely embedded in an <article> element.

<article>

 <h1>Article #1</h1>

 <hr />

 <section> Introduction </section>

 <section> First section </section>

 <section> Second section </section>

</article>

 CHAPTER 2 Making sense of HTML5 31

Note Elements such as <section>, <article>, <header>, and <footer> are semantic elements,
in the sense that browsers treat them as block elements. If you look at final results, there’s
nearly no difference between semantic elements and plain DIV elements. The most
 significant difference is in the expressivity of the resulting markup. By using <section>,
<article>, <header>, and <footer> elements, the resulting markup is much easier to read,
understand, and maintain over time.

The aside element
A lot of HTML pages display part of their content on columns that lie side by side horizontally. The
<aside> element has been introduced in HTML5 to quickly identify some content that is related to the
content being displayed all around. The syntax of the <aside> element is straightforward:

<aside> Markup </aside>

A very common scenario where you might want to take advantage of the<aside> element is to
define a sidebar in an article element and, more in general, to create multicolumn layouts for the
content of the page or sections of the page.

The nav element
The <nav> element indicates a special section of the page content—the section that contains major
navigation links. It should be noted that not all links you can have in a HTML page must be defined
within a <nav> element. The <nav> element is reserved only for the most relevant links, such as
those you would place on the main page navigation menu.

The syntax of the <nav> element is fairly intuitive. It consists of a list of <a> anchor elements listed
within the <nav> element:

<nav>

 Home

 Find us

 Job opportunities

</nav>

The <nav> element plays an important role in HTML5 because it indicates the boundaries of the
 section of the page that contains navigation links. This allows special page readers—such as browsers
for disabled users—to better understand the structure of the page and optionally skip some content.

Important All semantic elements in HTML5 are important in light of accessibility, and just
for this reason, they should be considered for use in any webpage that has chances to be
read by disabled users.

32 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Miscellany of other new elements
Semantic block elements represent the largest family of new elements in HTML5. As mentioned,
 semantic elements are important not so much for the effect they produce in the page but because
they increase the readability of the page significantly for developers, software, and especially
 browsers for disabled users.

Semantic block elements alone do not produce significant changes in the way in which HTML5-
compliant browsers render the page. For example, to color and position a sidebar (that is, the <aside>
element) where you like you still need to resort to CSS settings. However, using semantic elements
reduces the noise of having too many generic DIV block elements whose role and scope is not
 immediately clear.

In addition to semantic elements, HTML5 provides a few new elements with an embedded
 behavior that couldn’t be obtained in earlier versions of HTML without resorting to a combination of
CSS, markup, and JavaScript. Let’s see a few examples.

The details element
Many times you have small pieces of content in a page that you want to show or hide on demand.
A good example is the title of some news and its actual content. Sometimes you want to display only
the title but want to leave users free from clicking to expand the content and hide it to gain more
space.

Before HTML5, you had to code all of this manually using a bit of HTML, CSS, and JavaScript code.
In HTML5, the entire logic is left to the browser and all you have to do is type the following in an
HTML page.

<details open>

 <summary>This is the title</summary>

 <div>

 This is the text of the news and was initially kept hidden from view

 </div>

 </details>

The <details> element is interpreted by the browser and used to implement a collapsible panel.
The open attribute indicates whether you want the content to be displayed initially or not. The
 <summary> child element indicates the text for the clickable placeholder, whereas the remaining
content is hidden or shown on demand. Note that all parts of the <details> element can be further
styled at will using CSS.

Important Although the Visual Studio editor recognizes the <details> element and even
offers IntelliSense for it, the element is not supported by Internet Explorer 10. Other
HTML5-compliant browsers, however, do support it—specifically the latest versions of
Chrome and Opera.

 CHAPTER 2 Making sense of HTML5 33

The mark element
HTML5 also adds the <mark> element as a way to highlight small portions of text as if you were using
a highlighter on a paper sheet. Using the <mark> element is easy; all you do is wrap some text in the
<mark> element, as shown below:

The <mark>DETAILS</mark> element is not supported by Internet Explorer 10.

The entire text is rendered with default settings except the text enclosed in the <mark> element.
Most HTML5 browsers have default graphical settings for marked text. Most commonly, these settings
entail a yellow background. Needless to say, graphical effects of the <mark> element can be changed
at will via CSS.

Figure 2-5 shows how the previous text looks using Internet Explorer 10.

FIGURE 2-5 The mark element in action.

The dataList element
For a long time, HTML developers asked loudly for the ability to offer a list of predefined options
for a text field. The use-case is easy to figure out. Imagine a user required to type the name of a city
in a text field. As a page author, you want to leave the user free of entering any text; at the same
time, though, you want to provide a few predefined options that can be selected and entered with a
single click. Up until HTML5, this feature had to be coded via JavaScript, as HTML provided only two
 options natively: free text with no auto-completion or a fixed list of options with no chance of typing
 anything. The new <datalist> element fills the gap. Copy the following text to the body of a new
HTML page named datalist.html.

<input list="cities" />

<datalist id="cities">

 <option value="Rome">

 <option value="New York">

 <option value="London">

 <option value="Paris">

</datalist>

In the example, the <datalist> element is bound to a particular input field—the input field named
cities. It is interesting to notice that the binding takes place through a new attribute defined on the

34 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

<input> element: the list attribute. The attribute gets the name of a <datalist> element to be used as
the source of the input options.

When the input field gets the input focus, then the content of the <datalist> element is used to
autocomplete what the user is typing. Figure 2-6 shows the element in action on Internet Explorer.

FIGURE 2-6 The datalist element in action.

elements removed from older HTML versions
HTML5 adds some new elements, but also removes a few elements whose presence would only
 increase redundancy once combined with the new capabilities of CSS and new elements in HTML5.

The list of elements no longer supported most notably includes frame and font elements. It should
be noted, though, that the <iframe> element remains available.

In addition, a few style elements such as <center>, <u>, and <big> are removed. The reason is that
this functionality can be achieved easily through CSS. Probably due to the much larger use that page
authors made over the years, HTML5 still supports elements such as (for bold text) and <i> (for
italic text) that are logically equivalent to the now unsupported <u> and <big> elements.

Collecting data

HTML was originally devised to be a language for creating hypertext documents. Over the years, the
language has been enriched with layout capabilities and basic features to collect data. Writing input
forms to collect data from users proved to be a nontrivial task. One thing is to collect plain text; it is
quite another to collect a date, a number, or an email address.

For too many years, HTML has only offered input text fields completely unable to distinguish
 numbers, dates, and email addresses from plain text. Subsequently, page developers were responsible
for preventing users from typing unwanted characters and for client validation of the entered text.

With HTML5, a lot of this work has been pushed to the browser side. This means that by simply
using a slightly more sophisticated set of elements developers can achieve the same level of form
validation in a faster and safer way.

 CHAPTER 2 Making sense of HTML5 35

Adjusting input fields
In HTML5, you still create an input form by using the same markup elements you used from earlier
versions of the language. In other words, the following markup will still give you the opportunity to
upload any typed content to the given server.

<form action="http://www.yourserver.com/upload">

 Your name

 <input type="text" value="" />

 <input type="submit" value="Save" />

</form>

The <input> element is the element that inserts a graphical element (such as, an input box or a
drop-down list) to collect some input data. You also use the <input> element to add a push button to
start the submission process to the server. In HTML5, the <input> element comes with more options
for the type of input boxes. For example, you can have date pickers, sliders, and search boxes offered
by the browser. At the same time, the browser provides free form validation for most common
 scenarios, such as when a field is required and can’t be left empty by the user.

New input types
If you look at the HTML5 syntax of the <input> element, the major difference with past versions is the
list of values now allowed for the type attribute. Table 2-1 lists some of the new input types supported
in HTML5.

TABLE 2-1 HTML5 specific values for the type attribute

Value Description

Color Meant to let the browser display any UI that allows entry of a color.
Note: This input type is not supported on Internet Explorer 10.

date Meant to let the browser display any UI that allows entry of a date.

email Meant to let the browser display any UI that allows entry of an email address.

number Meant to let the browser display any UI that allows entry of a numeric input.

range Meant to let the browser display any UI that allows entry of a numeric input.

search Meant to let the browser display any UI that allows entry of a text to be searched
for.

tel Meant to let the browser display any UI that allows entry of a telephone number.

time Meant to let the browser display any UI that allows entry of a time.

url Meant to let the browser display any UI that allows entry of a URL.

Note that the list in Table 2-1 is incomplete and limited to input types that you can really find
 supported today on some web browsers. Other input types (for example, week) are part of the
 current HTML5 draft but are not implemented anywhere. You might want to refer to
http://www.w3schools.com/html5 for more details.

36 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

What you can really expect from browsers
What you have read in Table 2-1 represents the HTML5 standard that browsers are expected
to comply with by the time the standard is officially approved and promulgated. At this time,
Opera and Chrome are likely the browsers that offer the best support for the current draft
of HTML5. In general, the support for HTML5 you can currently get from all browsers is not
uniform.

The point is that HTML5 is not yet an approved standard and won’t be definitive for a few
more years. At the same time, companies are eager to use HTML5 goodies in real websites
and applications. Websites and applications, however, require compliant browsers. As you can
imagine, this situation determines a sort of catch-me game between browser vendors. Each
new release of browsers improves support for the HTML5 standard or makes it more adherent
to the actual standard, removing possible features resulting from misinterpretation of older
drafts.

HTML5 is not going to be something unambiguously defined for a few more years. Internet
Explorer 10—the browser you find integrated in Windows 8—improves significantly the sup-
port for HTML5 over Internet Explorer 9. Note that in Windows 8 you find two flavors of the
Internet Explorer browser—the classic version, which builds on top of Internet Explorer 9, and
the version with the native Windows 8 look-and-feel. This version, in particular, lacks the ability
to run plug-ins (specifically, Flash and Silverlight) and organize favorites in folders.

Making input fields auto-focusable

HTML5 provides the definitive solution to a couple of common problems that developers faced for
years and solved using a bit of JavaScript code. The first of these problems relates to giving the input
focus to an input field.

Using JavaScript, you can tell the browser to assign the input focus to a particular input field upon
display of the page. In HTML5, you can use a new attribute for the <input> element—the autofocus
attribute. Try placing the following code in the body of a new HTML page named autofocus.html.

<form>

 <input type="text" value="Dino" />

 <input type="text" autofocus />

 <input type="submit" value="Save" />

</form>

Save the page and display it in Internet Explorer. As Figure 2-7 shows, the cursor that indicates
input focus is on the second field.

 CHAPTER 2 Making sense of HTML5 37

FIGURE 2-7 The autofocus attribute in action.

Giving hints to users
Looking at Figure 2-7, it is quite hard to figure out which content goes in which field. Probably in a
real-world page, one would use labels and a more sophisticated layout to make it easier for users
to understand the expected content for each field. This is just the second problem I referred to a
 moment ago.

Recently, developers got into the groove of displaying a short text message in an input text field
to instruct users. Before HTML5, this could only be accomplished by using a bit of JavaScript code. In
HTML5, the new placeholder attribute makes it a lot easier and even more natural.

Create a new HTML page and save it as placeholder.html. Now edit the content of the body, as
shown below:

<form>

 <input type="text" placeholder="First name" />

 <input type="text" placeholder="Last name" />

 <input type="submit" value="Save" />

</form>

As Figure 2-8 shows, both empty fields now provide a hint to users about the expected content.

FIGURE 2-8 The placeholder attribute in action.

38 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Form submission
Sometimes developers have no other option besides writing the same boilerplate code over and over
again, no matter how annoying it is. A good example of boilerplate code that it would be great to
stop writing is validation of input forms in HTML pages. Any data collected from an HTML input form
should be carefully validated on the server before being used for some business tasks. However, some
basic validation tasks can be easily delegated to the browser and commanded by the developers
 using markup instead of JavaScript code.

HTML5 helps reduce the amount of boilerplate code requested to build effective input forms. I’ve
already mentioned the newest attributes of the HTML5 <input> element; the next step is to take a
look at other attributes you can leverage to control the whole process of form submission, including
ways to ensure that the user has not left required fields blank, and that the user input matches
 expected patterns. For example, if you ask for a phone number, the user shouldn’t be allowed to enter
something that couldn’t possibly be a valid phone number.

Detecting required fields
By adding the required attribute to a <input> element, you tell the browser that the input field cannot
be blank when the form that contains the input element is submitted. You use the required attribute
only if the field is not considered optional.

Consider the following content of an HTML page named required.html:

<body>

<form>

 <input type="text" placeholder="Your PIN" required />

 <input type="submit" value="Enter" />

</form>

</body>

When the user pushes the submit button and the text field is empty, the browser automatically
denies the post and displays an error message. The specific content, form, and shape of the error
message may change according to the browser; the overall behavior, though, is similar on all HTML5-
compliant browsers. Figure 2-9 shows how Internet Explorer 10 deals with required fields left empty.

FIGURE 2-9 The required attribute in action.

 CHAPTER 2 Making sense of HTML5 39

HTML5 browsers allow you to customize the error message by using the oninvalid attribute, as
shown below:

<form>

 <input type="text" placeholder="Your PIN" required

 oninvalid="this.setCustomValidity('PIN is mandatory')" />

 <input type="submit" value="Enter" />

</form>

Note In general, you use the oninvalid attribute to specify any JavaScript code that should
run when the content of an input field is invalid, either when that field value was required
and left blank or when its content failed validation.

Validating against regular expressions
Table 2-1 lists popular new types of input fields supported by HTML5-compliant browsers. If your
page is expected to collect a date, then you can use an input date field; likewise, you can use a
 numeric input field if you need to collect a number and so forth. But what if you intend to collect
data formatted in a specific way that none of the predefined input types can guarantee? For example,
what if you need users to enter a string with two letters followed by exactly six digits?

In HTML5, you can use the pattern attribute, as shown in the example below:

<form>

 <input type="text"

 placeholder="Your PIN"

 title="2 letters + 6 digits"

 pattern="[a-zA-Z]{2}\d{6}" />

 <input type="submit" value="Enter" />

</form>

When you use the pattern attribute, Internet Explorer 10 requires that you also indicate the title
attribute—usually used to add a tooltip to most HTML elements. The text of the title attribute is
combined with a default static message to produce some feedback to the user when the content of
the field is invalid.

Figure 2-10 shows how Internet Explorer 10 deals with patterns when the submitted content is
invalid.

40 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 2-10 The pattern attribute in action.

The value of the pattern attribute has to be a regular expression. Regular expressions can get
very complex; in fact, they’re a topic worthy of a complete book, but learning the basics of regular
 expression use isn’t too difficult. For more information on regular expressions, you can check out
http://www.regular-expressions.info.

Forms and input validation
Each HTML form should contain a submit button; when the submit button is pushed the browser
 collects the content of the input fields and prepares to post it to the specified URL. Up until HTML5,
the browser was not responsible for validating the content of the form. Developers, though, could
hook up validation to the process using a bit of JavaScript code.

Validating a form entails checking that each input field in the form contains valid content.
 Although the HTML5 standard doesn’t mandate browsers to validate the content of a form, this is
indeed what happens by default with most browsers. HTML5 browsers give you a chance to disable
validation on the entire form, but not on individual fields. You can disable form validation by using
the novalidate attribute, as shown below in the file novalidate.htm:

<form novalidate>

 <input type="text" placeholder="Your PIN"

 title="2 letters + 6 digits"

 pattern="[a-zA-Z]{2}\d{6}" />

 <input type="submit" value="Enter" />

</form>

In this case, the content of the form is submitted to the server regardless of the data held by input
fields.

If the form contains multiple submit buttons, you can enable or disable validation on a per-button
basis so that validation occurs if users, say, click the first button but not the second. To disable
 validation when the form is submitted via a particular submit button, you add the formnovalidate
 attribute as follows:

<input type="submit" value="..." formnovalidate />

 CHAPTER 2 Making sense of HTML5 41

Note The formnovalidate attribute overrides the form’s novalidate attribute if both are set.

Multimedia elements

HTML5 offers two new markup elements that developers can use to play audio and video files from
within webpages without resorting to external plug-ins such as Flash and Silverlight. The entire
 infrastructure to play audio and video (including graphical feedback to users) now is provided natively
by the browser.

The audio element
To embed audio content into HTML documents, you use the <audio> element. The syntax is trivial, as
the example below shows:

<audio src="/hello.mp3">

 <p>Your browser does not support the audio element.</p>

</audio>

Optionally, you can incorporate some markup in the body of the <audio> element to be used in
case the browser can’t deal successfully with the <audio> element. Next, you’ll explore a bit more
about how to embed audio in HTML5 pages.

Using the <audio> element
The <audio> element supports a variety of attributes, as listed in Table 2-2. Of these, the most impor-
tant is src, which you use to point to the location of the actual audio stream.

TABLE 2-2 Attributes of the <audio> element

Attribute Description

autoplay Indicates that the audio will start playing as soon as the content is available to the
browser.

controls Instructs the browser to display audio controls, such as the play and pause buttons.

loop Indicates that the audio will automatically restart after it is finished.

preload
Note that the preload attribute is
ignored if the autoplay attribute
is also present.

Instructs the browser on how to load the audio content when the page loads.
Allowed values are none, meaning that no content should be preloaded; auto,
meaning that the entire content should be downloaded when the page loads;
and metadata, meaning that only content metadata should be preloaded on
page display.

src Indicates the URL of the audio file, whether local or remote.

42 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

So far, I have referred to audio content in a rather generic way, without mentioning specific
audio formats such as MP3 or WAV. This is a major problem with HTML5-compliant browsers:
Not all browsers support the same set of audio formats by default (without resorting to external
 components).

The problem of codecs
An audio file is a sequence of bytes that codec software decodes for playing. An audio file, therefore,
can be encoded in a variety of formats, each requiring an ad hoc codec—MP3, WAV, OGG, and
more. More often than not, a codec is a piece of software that implements patented algorithms, so
 embedding a codec directly in the browser may pose copyright issues.

The current HTML5 standard doesn’t make an official ruling about codecs, so deciding on the
format to support will remain up to the browser vendors for now.

From a developer’s perspective, this is not great news. Different browsers support different audio
formats, leaving developers with the problem of working out the most effective way to play audio
from the same page on different browsers.

Supported codecs
The simplest way of approaching the problem of multiple codecs is to provide multiple files so the
browser can choose the most appropriate for its capabilities. In other words, instead of linking the
<audio> element to just one audio file and codec, you link it to multiple sources. You no longer use
the src attribute; instead, you resort to a set of <source> elements inside the <audio> element. Here’s
an example of playing an audio file using <source> elements:

<audio controls autoplay>

 <source src="hello.ogg" type="audio/ogg" />

 <source src="hello.mp3" type="audio/mp3" />

 <p>Your browser does not support the audio element.</p>

</audio>

The <source> elements link to different audio files. The browser will use the first format it knows
how to support. While simple to implement, this approach is not free of issues—in the sense that
it requires you to have each audio file available converted into multiple formats and stored on the
server in multiple copies.

A basic guideline is that the OGG format is not subject to software patents. OGG will work in
Firefox, Opera, and Chrome. To target Safari and Internet Explorer, you need to use MP3 encoding
instead.

The video element
To embed video content into HTML documents, you use the <video> element. The syntax is just as
trivial as what you have seen for the <audio> element:

 CHAPTER 2 Making sense of HTML5 43

<video src="/hello.mp4">

 <p>Your browser does not support the video element.</p>

</video>

Similarly, you can optionally incorporate some markup in the body of the <video> element to be
used in case the browser can’t deal with video successfully.

Using the <video> element
Table 2-3 presents the list of attributes you can use to customize the aspect and behavior of the
<video> element in HTML5-compliant browsers.

TABLE 2-3 Attributes of the <video> element

Attribute Description

autoplay Indicates that the video will start playing as soon as the content is available to the
browser.

controls Instructs the browser to display video controls such as the play and pause
 buttons.

height Indicates the desired height of the video player in the HTML document.

loop Indicates that the video will automatically restart after it is finished.

muted Indicates that the video sound should be muted off.

poster Instructs the browser to display a specified image while the video content is
downloading, or until the user chooses to play the video.

preload
Note that the preload attribute is
ignored if the autoplay attribute
is also present.

Instructs the browser on how to load the video content when the page loads.
Allowed values are none, meaning that no content should be preloaded; auto,
meaning that the entire content should be downloaded when the page loads;
and metadata, meaning that only content metadata should be preloaded on
page display.

src Indicates the URL of the video file to play, whether local or remote.

width Indicates the desired width of the video player in the HTML document.

It is highly recommended that you always set both width and height in a <video> element. This
helps the browser to reserve enough space while rendering the page. In addition, you should always
set width and height to the real size of the video clip you plan to incorporate. If you downsize the
video player, you force the browser to do even more work. Keep in mind that downsizing a video
won’t save the user any download time. If you have a video that is too large for the page, you should
resize it with an ad hoc program first, and then link it using its new size.

Figure 2-11 shows how Internet Explorer 10 renders a video element.

44 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 2-11 The video element in action.

Supported codecs
When it comes to codecs, video suffers from the same issues that audio does. Therefore, it requires
the same workaround.

You should not use the src attribute unless you are well aware of the concrete risk that the video
may not be playable on some browsers. To gain the widest support from HTML5-compliant browsers,
you should use the <source> element. Here’s the rewritten content of the sample video.html file:

<video controls width="320" height="240">

 <source src="/sample.ogg" type="video/ogg" />

 <source src="/sample.mp4" type="video/mp4" />

 <p>Your browser does not support the video element.</p>

</video>

Just as for audio, the <source> elements link to different video clips and the browser will use the
first format it knows how to support. As a guideline, you should plan to have an MP4-encoded video
for Internet Explorer and Safari, and OGG for all other browsers.

 CHAPTER 2 Making sense of HTML5 45

Summary

HTML has been around for a couple of decades, but it only recently underwent significant syntax
changes. The new HTML5 specification clears out some obsolete elements and adds new markup
 elements for specific (and common) tasks. New elements have stronger semantics that make it
 obvious what they are for—such as header, footer, menu, section, and more.

These new elements, however, live side by side with older and, semantically speaking, more
 generic elements such as DIV. The result is that sometimes you have two or more ways to achieve
the same rendering—using direct HTML5 elements or a combination of more generic elements.
If you plan to target HTML5 browsers, using new elements keeps your markup easier to read and
 understand—in a word, simpler.

The purpose of this book is to build Windows 8 applications, as opposed to classic websites, which
makes the differences between older HTML and HTML5 unimportant: this book uses HTML5 all
the way through. However, if your goal is to build a website for the general public, then integrating
HTML5 in the markup of the pages is much more difficult. For web applications, you will need to deal
with browser differences and ensure that the behavior is uniform across major browsers.

 47

Chapter 3

Making sense of CSS

In matters of style, swim with the current; in matters of principle, stand like a rock.
—Thomas Jefferson

As you learned in Chapter 2, “Making sense of HTML5,” an HTML page is made up of a bunch of
elements that together define the content and layout of what the browser will actually display.

Each element of the HTML markup language has its own semantics and syntax. So an INPUT element,
for example, indicates an input field, and additional attributes specify shape and behavior of the input
field. The display of these elements is usually determined by the specific browser.

So far, nothing has been said about how to give these elements a custom appearance.
 Nonetheless, changing font, colors, margins, and sizes of HTML elements is definitely possible—and
to a large extent, even desirable. An acronym for Cascading Style Sheet, CSS is the name of the
 language used to format the content of HTML pages.

An HTML page results from the combination of three components: content, style, and behavior.
Content is expressed via the HTML markup language, as discussed in Chapter 2. Style is managed via
CSS, as you’ll see in this chapter. Finally, behavior is handled via JavaScript, which you’ll learn about in
the next chapter.

Styling a webpage

HTML arrived well before CSS in the early 1990s. In the beginning, developers used to tweak the
 appearance of the page by simply adding ad hoc attributes to markup elements. While initially
 effective, this approach soon became unmanageable and a significant source of confusion for
 developers and users.

To acquire larger and larger market shares, vendors began adding new proprietary style attributes
with each new release of their browsers. As a side—but not secondary—effect, HTML documents
became significantly larger in size and subsequently led to download issues. There was more work for
the servers but also more work for client browsers and slower responses for users.

48 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

In addition, browsers were often challenged to interpret unknown attributes and tags. It was not
an easy choice for architects to decide whether the appropriate reaction to malformed markup was
to throw an error to the user or to just silently skip over unknown elements. Most browsers opted for
the second option. Although that choice improved the user experience, it made life for developers
 significantly harder and, in hindsight, it might not be overreaching to say that it delayed the explosion
of client-side web developing by a few years.

To find a consistent way to separate content from presentation, back in the mid-1990s the World
Wide Web Consortium (W3C) created a committee to give shape to a standard language for styling
the content of webpages. That was the beginning of CSS. The very first recommendation came out
in 1996. Over the ensuing years, new levels of specifications have appeared regularly, with growing
adoption from browser vendors and increasing levels of use by developers. Today, the CSS3 standard
is complete and broadly adopted by browsers. A CSS4 standard is in the works.

For the purposes of this book, CSS will refer to CSS3.

Adding CSS information to pages
So CSS is a language that complements HTML and gives page authors the great opportunity to define
structure and content in one file and define layout and appearance in another file. Thanks to such
a neat separation of concerns, different teams of people—typically web developers and graphical
designers—can work in parallel on the same project.

In the rest of this chapter, you’ll explore various ways to add CSS styling to HTML pages.

Inline styling
CSS works by adding style information to individual HTML elements. Up until a few years ago, it was
fairly common among HTML authors to add style information locally, within the definition of the
HTML element. This technique, known as inline styling, consists of adding a new style attribute to each
HTML element you are interested in configuring. Here’s an example:

<div style=" ... ">

 <!-- some markup goes here -->

</div>

The content of the style attribute is a semicolon (;) separated string. Each token within that
string consists of two parts: a property name and a value separated by a colon (:). Here’s a sample
style string that defines the background and foreground color of any content inside the styled DIV
 element:

<div style="background-color:#000000;color:#ffffff">

 <!-- some markup goes here -->

</div>

 CHAPTER 3 Making sense of CSS 49

The net effect of the preceding code snippet is that the content of the DIV element is given a black
background (color #000000), whereas any text it contains is written in white (color #ffffff). That style
information is scoped to the specified DIV element and doesn’t apply to any content outside of it.

This technique has both pros and cons, but the cons likely outweigh any pros. Inline styling just
works; it’s easy to understand and quick to apply for everybody—experts and novices. But it has
critical drawbacks. In particular, the markup of pages gets fat and soon becomes harder to read and
understand. In addition, there’s the potential for a lot of repetitive style details across the same page
and multiple pages. You should avoid inline styling as a bad programming practice or, at the very
least, you should limit its use to a small number of places where you want to make exceptions to more
general style rules created in CSS.

embedded styles
Another option is grouping style definitions in a few places within the HTML file. You can use a STYLE
element, in fact, as the repository of custom styles. Within a STYLE element, you first identify the
target element and then define attributes that affect its appearance. The STYLE element is usually
located under the HEAD element at the top of the HTML page. You can have multiple STYLE elements
in any HTML page. Here’s an example:

<html>

 <head>

 <style>

 body {

 background-color: black;

 color: white;

 }

 </style>

 </head>

...

</html>

As you may recognize, the content inside curly brackets describes the style to apply. The
 expression you find just before the opening bracket—body in the previous example—indicates the
element (or elements) the style will apply to.

You’ll see more detail about this point in just a few moments; for now, it’s sufficient to say that the
expression that identifies the target of the style is referred to as the selector and can be the name
of a user-defined CSS class, the ID of a particular element, or the tag name of an HTML element. In
the previous example, body is the name of the main HTML element; so background and foreground
colors set through the style shown will affect the entire body of the page.

Although embedding <style> elements in an HTML page makes for a cleaner approach to
page authoring than inline styling, it is not a recommended practice. Compared to inline styling,
 embedded styles promote the reuse of styles across multiple elements within the same page. On the

50 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

other hand, style information must be incorporated into each page and contributes to making your
pages heavier.

The reuse of a style is possible, but only within the boundaries of a single page; to use the same
style from within different pages you would have to replicate the style definition in each page.

Using external files
Rather than inline or style tags, the recommended approach for styling HTML elements entails
the use of separate CSS files (or style sheets) to which each page links autonomously. The browser
 identifies the CSS content as a single URL and downloads it only once—regardless of how many pages
in the website use the styles in that style sheet. Moreover, the downloaded file can be cached at the
local computer and reused over and over again until the file expires, with no further download costs
for the browser.

Here’s a brief example of how to define and link a style sheet to alter the default appearance of
a HTML page. From the New File dialog box shown in Figure 3-1, first create a new HTML page and
name it demo1.html, and then proceed to create a new style sheet named demo1.css.

FIGURE 3-1 Creating a new HTML page and style sheet.

Now open the HTML page and edit its content until it matches the code below:

<!DOCTYPE html>

<html>

 <head>

 <title>CSS Example</title>

 </head>

 <body>

 <header>This is our header</header>

 CHAPTER 3 Making sense of CSS 51

 <footer>

 <hr />

 Start Here! Build Windows® 8 Applications with HTML5 and JavaScript

 </footer>

 </body>

</html>

You have just given the page a bit of content. You have not yet done anything to link the HTML
page with any style sheet. To do so, edit the HEAD element of the HTML page as follows:

<head>

 <title>CSS Example</title>

 <link href="demo1.css" rel="stylesheet" />

</head>

Now when rendering the page, the browser will use the information contained in the style sheet to
adjust the appearance of elements.

Note In the rest of the chapter and the book, you’ll always be using style sheets via
 separate CSS files. Unless otherwise noted, you won’t be using any more inline styling or
embedded styles.

Selecting elements to style
The next step is learning how to write a style sheet. A style sheet consists of a sequence of commands
defined according to the following pattern:

selector {property1: value; property2: value2; ...}

The selector is an expression that identifies the element (or the elements) to be styled. A selector
can identify a single element through its unique ID, all elements with a given tag (for example, all
DIV elements), or all elements sharing the same CSS class. As you’ll see in a moment, a CSS class is a
named collection of style commands.

The style commands are in the form of

property-name: value;

Each selector can refer to multiple style commands. Each style command ends with a semicolon (;).
A final command that ends without the semicolon is often forgiven by browsers and renders correctly.
Anyway, it is preferable to always use the ending semicolon for each style command. Blanks can be used
to separate consecutive style commands. Blanks do not affect the way in which browsers parse the style
sheet, but they help considerably in reading the content of the style sheet.

52 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The CSS standard defines a long list of property names for you to use in style commands and
 related feasible values. In addition, some browsers define their own custom properties to add
 proprietary features.

In this section, you’ll review the purpose and syntax of selectors. Then you’ll be up to exploring the
CSS properties and their values.

Note The content of an embedded STYLE element and a style sheet CSS file is the same.
At any time, you can take the content of an embedded STYLE element and save it to a
linked CSS file to achieve the same graphical outcome.

referencing elements by ID
In HTML, all elements in a page can (and sometimes should) have a unique ID. Having an ID is not
mandatory, but it’s the recommended way for a page author to identify (in unambiguous way) a
given element. In HTML, you give an element a unique ID by setting the ID attribute, as shown below:

<div id="header" ... />

Multiple elements in the same page shouldn’t have the same ID—even though this aspect is
 sometimes tolerated by browsers and doesn’t usually prevent the page from being rendered.

The pattern to refer to an element via ID in a CSS style sheet is expressed as follows:

#id {

 ...

}

The selector consists of the ID string prefixed by the # symbol. Let’s consider the following HTML
button element:

<input id="button1" type="button" value="Say Hello!" />

To style the button so that its caption shows in red, you need to have the following command in
the style sheet:

#button1 {

 color: red;

}

You typically reference elements by ID when you don’t expect to reuse the style commands for
other elements in the pages of the site. Using a selector based on ID is, therefore, a way to style just
one specific element.

 CHAPTER 3 Making sense of CSS 53

referencing elements by name
HTML elements are automatically styled by browsers, and each browser may style these elements
 differently. For example, a plain button element is styled with round corners on, say, an iPhone and
with square corners on a Windows Phone.

CSS allows you to change the appearance of standard HTML elements by creating a selector with
the name of the element’s tag. For example, to style all hyperlink elements—for example, the A
 element—in the same way, you define a selector as below:

/* All A elements are yellow and don't render the underline */

a {

 color: yellow;

 text-decoration: none;

}

Note that, all in all, styling by tag name may sometimes be too invasive, at least for certain tags.
For example, having all links look the same is more acceptable than having all input fields or table
elements look the same throughout the whole set of pages of the site.

referencing elements via custom classes
If you intend to give the same appearance to a variety of elements in one or more pages, then you
need to create a CSS class. As mentioned earlier, a CSS class is a named collection of style commands.
You define the class in a style sheet by indicating the (arbitrary) name of the class prefixed by the
dot (.) symbol. Here’s an example:

/* This CSS class named "red-button" defines a button with red text */

.red-button {

 color: red;

}

In the source code of an HTML page, you assign an element a CSS class using the class attribute.
Here’s an example:

<input id="button1" class="red-button" type="button" value="Say Hello!" />

What if in the HTML page you assign an element a class name that doesn’t exist? Nothing bad will
happen; the browser will just ignore the setting.

The cascading model
When rendering any HTML element, browsers expect to find a value defined for each possible CSS
property they recognize. This doesn’t mean, however, that developers should assign a value to just
each possible CSS property for each element in the page. The “C” in the CSS acronym says it all.
C stands for cascading and all it means is that browsers provide a default value for each property.
These values can be overridden by developers.

54 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

For each CSS property, the actual value that determines how the element will render is given by
the value possibly assigned directly to the element or to its innermost parent element. At the root of
the CSS hierarchy there’s the default value assigned by the browser. Let’s consider the following HTML
snippet:

<html>

 <body>

 <header>

 <div>

 Hello, world!

 </div>

 <div>

 This is me.

 </div>

 </header>

 This is the body of the page.

 </body>

</html>

The text is given a default combination of fonts and colors by the browser. You can override these
settings by styling the BODY element. If you do so, all settings propagate down the document tree
and apply to any text in the page. If you intend to modify the text in HEADER, or in just one of the
DIV elements within the header, you add new style commands only to that element. Any settings
that are not explicitly overridden retain the value assigned to them at a higher level of the hierarchy.
 Figure 3-2 illustrates the cascading model of CSS in which settings applied at a given element
 affect all the elements found in the subtree rooted in that element.

FIGURE 3-2 The “cascading” model.

 CHAPTER 3 Making sense of CSS 55

Basic style commands

The CSS syntax includes several properties that you can use to define nearly every aspect of
HTML elements: font, colors, measurement, layout, position, shadowing, and more. Here’s a quick
 summary of the most frequently used properties. If you’re seeking a full reference, have a look at
http://bit.ly/Snr6cX.

Setting colors
Changing the colors of some text is often the first thing that developers try to do to exercise control
over a software feature. Let’s see the options available to modify colors in a CSS style sheet.

Defining colors
In all the examples so far, you have seen colors referred to by names such as black, red, or white. CSS
allows you to express color in other more powerful ways. The HTML and CSS standards define 147
color names, among which you find black, blue, fuchsia, gray, green, purple, red, silver, white, and
 yellow. The full list of predefined colors can be found at http://bit.ly/QyqKUx.

In general, colors are expressed as a triple of integer values (between 0 and 255) for their Red,
Green and Blue component. You can use any of the following syntaxes to indicate a custom color:

.my-classic-button {

 color: #ff0000;

}

.my-fancy-button {

 color: rgb(255, 0, 0);

}

In the former example, you use a hexadecimal expression for the RGB values. Hexadecimal values
must be prefixed by #. The first two characters refer to the Red, the second two refer to the Green,
and the last two refer to the Blue.

In the latter example, you use the rgb function instead, which accepts decimal values. Also in this
case, the order of color components is Red, Green, Blue.

http://bit.ly/Snr6cX
http://bit.ly/QyqKUx

56 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Note Browsers also allow you to add a level of transparency to colors. This is achieved
by adding a fourth value to the color definition—the alpha channel. In the hexadecimal
 format, the alpha value ranges from 0 (completely opaque) to 255 (completely transparent).
In the RGB format, the alpha value can be expressed as a decimal value (that is, 0.5) or as a
percentage (that is, 50%). If you intend to add transparency to colors, you have to use the
rgba function, as shown below:

.my-classic-button-transparent {

 color: #88ff0000; /* transparency is first value, 88 in this

case */

}

.my-fancy-button-transparent {

 color: rgba(255, 0, 0, 0.5); /* transparency is fourth value, 0.5 in this

case */

}

In general, you should be aware that older browsers may not support transparent colors.
However, as a reader of this book, the presumption is that you’re mostly interested in
Windows 8 programming, and in the context of Windows 8, transparent colors are fully
supported.

Changing the foreground color
The color of any piece of text around an HTML page is controlled by the color property. By setting
the color property on the BODY element, you give all the text within the page a default color of your
choice.

body {

 color: black;

}

You are not limited to just one color per page; you also can set the foreground color of every
single element you have in the page. To select one or more elements, you use ID or class selectors.
For example, the aforementioned red-button custom class renders text in red for all elements where it
is applied.

.red-button {

 color: red;

}

 CHAPTER 3 Making sense of CSS 57

Changing the background color
The background color of an HTML element plays an important role in HTML design, since it can be
used to achieve compelling effects. Each element can have its background painted with a solid color
or a gradient of colors. It can also have the background textured with a bitmap. Let’s start with the
simplest scenario: using a solid color. Here’s what you need:

.blue-button {

 color: #ffffff; /* white */

 background-color: #0000ff; /* blue */

}

The background-color property accepts a color expression.

Using gradients
To give an HTML element a gradient background, you set the background property with an expression
that describes the type of gradient you want. Here’s how to create a linear vertical gradient that
 begins with blue, ends with red, and has some white in the middle.

.blue-button {

 color: #ffffff; /* white */

 background: linear-gradient(to bottom, blue, white 80%, red);

}

In particular, the white appears towards the end of the gradient (80%) and the red takes the
remaining 20% of the background. The keyword bottom indicates the direction of the gradient.
 Similarly, you can create a radial gradient by just using the radial-gradient function.

Using a background bitmap
There are several more properties to learn about if you intend to use a bitmap as the background of
the element. Consider the following example:

.img-button {

 color: #ffffff; /* white */

 background-image: url(/images/button-bkgnd.png);

 background-repeat: no-repeat;

 }

The background-image property allows you to link the image for the background. You do that via
the url function, as you can see in the example. If the image is too small for the background area, you
may decide to repeat it vertically and/or horizontally or to render it only once. You control this aspect
via the background-repeat property, with the values no-repeat, repeat-x (horizontal), and repeat-y
(vertical).

58 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Bitmaps are often used to paint the background of the entire page. If the page is rich in content
and scrolls horizontally or vertically, what should the image do? Should it scroll with the rest of the
page or should it stick to its original position and have the content scroll over it? You can control that;
here’s how:

body {

 color: #ffffff; /* white */

 background-image: url(/images/bkgnd.png);

 background-repeat: no-repeat;

 background-attachment: fixed;

 }

The background-attachment property accepts either of the following two values, whose meanings
are straightforward: fixed and scroll.

Controlling text
In any HTML document, the text is the most important part. Hence, choosing the right combina-
tion of font and effects is key for a successful page. All browsers use a default font for the text and
this font (that is, Times New Roman) is often not appropriate for most users. Switching to a different
font family couldn’t be easier. However, before you learn that, a consideration specific to Windows 8
programming is in order.

Important Windows 8 comes with its own highly specific user interface. The primary
font is Segoe UI. Since you may write Windows 8 applications using HTML and CSS, you
are allowed to change the font. However, this is not a recommended practice. In some
cases, changing font family and size may even give you a hard time uploading the final
 application to the Windows Store. In general, when it comes to using CSS for Windows 8
applications, changing the font family and font size becomes a delicate point. You should
not do this, unless it is necessary and even then possibly only for small portions of the user
interface. Instead, you should use the default Windows JavaScript style sheets, as you’ll
 encounter in Chapter 5, “First steps with Windows 8 development.”

Choosing the font family and size
In CSS, you use the font-family property to indicate one or more families of fonts you would like
to use. When it comes to fonts and browsers, it should be clear that the content of the font-family
 property is only a recommendation for the browser. Since the webpage is hosted on a website and
viewed on a local computer, it may be that the local computer is not equipped with the requested
font. For this reason, it is a good practice to always indicate alternate fonts, as shown below:

body {

 color: #ffffff; /* white */

 CHAPTER 3 Making sense of CSS 59

 background-image: url(/images/bkgnd.png);

 background-repeat: no-repeat;

 background-attachment: fixed;

 font-family: "trebuchet ms", helvetica, sans-serif;

 }

Font families are listed in order of preference. If the first choice is not available, then the browser
moves on to the second, and so on. If a font name contains spaces, it is preferable to enclose it in
quotes even though this is not always strictly necessary on all browsers.

Years of HTML development have taught developers that Helvetica and Sans-serif as backup fonts
are a great choice that ensures at least decent rendering across all browsers.

What about the size of the font? You can indicate the desired font size through relative and
 absolute lengths and using a number of measurements. For example, you can use keywords like
x-small, small, medium, large, and x-large. These keywords are relative to the standard browser font
size, as modified by the user. If you indicate the font size as a percentage, then the actual size is
 relative to the surrounding text. If you use a number between 0 and 1 with the em measure, then the
actual size is relative to the parent element. Finally, if you use a number of pixels (px is the measure),
then the actual size is relative to the screen resolution. Here are a few examples:

#footer {

 font-size: 80%;

}

#copyright {

 font-size: 9px;

}

#trademark {

 font-size: .8em;

}

Relative lengths are the best possible choice for rendering on a screen. Absolute lengths, such as
points (pt is the measure) or perhaps millimeters (mm is the measure), may lead to text that shows
larger or smaller on different computers.

Important As mentioned, for Windows 8 applications it is preferable that you stick to the
classes defined in the standard Windows 8 style sheets.

Styling fonts
More often than not, you want to alter the default style of the font to give some text more relevance.
This means making some text italic, bold, or perhaps underlined. Boldness is expressed through the
font-weight property, whereas styles (that is, italic) require the font-style property.

60 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

#footer {

 font-size: 80%;

 font-weight: 700;

 font-style: italic, underline;

}

If you just want to render some text in bold, you can simply set the font-weight property to bold.
If you need more control over the weight of the text, you can choose a value between 400 (normal)
and 700 (bold). Higher or lower values are still allowed, and they just decrease or increase the
“weight” of the font.

HTML display modes
An HTML page results from the composition of multiple elements. How are these elements actually
composed by the browser? Will they just be stacked up horizontally or vertically? Is there blank
space that can be configured between them? In this section, you’ll learn about the first point before
 addressing the second point in the next section.

HTML allows two basic display modes: inline and block. All HTML elements render in one of these
ways by default. For example, the DIV element is always rendered as a block, whereas the SPAN
element is rendered inline. You can change display modes via CSS, however. The property to use is
named display.

Block elements
Block elements are stacked up vertically. Each block element takes up the entire width available and
is rendered as if there were a line break before and after. This means that whenever the browser
encounters a block element it begins rendering on a new line. When done, it moves to the next line
before attacking a new element. Here’s how to ensure that a custom CSS class renders out as a block:

.headline {

 display: block;

}

Common HTML elements that are displayed as blocks by default are H1 (and other heading
 elements), DIV, P, UL, LI, TABLE, and FORM.

Inline elements
Conversely, inline elements don’t force the browser to break the flow of HTML when rendering.
An inline element just renders side by side with existing content, and strictly takes up necessary
space. Here’s how to ensure that a custom CSS class renders out content inline:

.headline {

 display: inline;

}

 CHAPTER 3 Making sense of CSS 61

Common elements rendered inline by default are SPAN, A, INPUT, and IMG.

Note By using the display property, you can turn block elements into inline elements and
vice versa. What browsers do normally is simply a predefined setting that can be changed
by developers.

Floating elements around
Sometimes blocks and inline display modes are not enough to achieve your graphics goals. Let’s
 consider the following HTML markup:

<div id="article">

 Some possibly long text

</div>

By default, image and text are rendered side by side, and the text is placed at the bottom of the
image, as shown in Figure 3-3.

FIGURE 3-3 Basic alignment of image and text.

Via CSS, you can alter the vertical alignment of the text to middle or top. However, none of these
tricks will give you what you likely want—text floating around the image, as depicted in Figure 3-4.

FIGURE 3-4 Text floating around an image.

To achieve this effect, you need to deal with the float property. The float property has the effect of
displaying elements next to one floated on a continuous flow that automatically wraps to the next line
when the containing box ends. The float property uses values like left or right to denote the direction of
the flow. The following CSS applied to the former HTML snippet produces the output of Figure 3-4.

#article {

 float: left;

 width: 100px;

}

62 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

When float is used, the elements that follow move up to fill any available space—similar to what
happens in a text editor when you remove a carriage return. The float property breaks the usual
meaning of block and inline. At some point, though, you need to restore things to the natural order
and stop floating. The element where floating stops must be styled as below:

#stopFloating {

 clear: both;

}

The float stopper element can be a true element of the page (that is, a paragraph of text) or an
empty DIV element only used to stop floating.

Note If you’re still a bit confused about the differences between inline and floating,
 consider that inline is all about having individual elements laid out side by side on the
same logical line. Floating, however, is about wrapping elements between a starting and an
 ending point.

Inline-block elements
Floated elements work well, but they also have some drawbacks when they span over multiple lines
and each element is of a different size. When you face this problem, then the third possible value of
the display property comes to the rescue: the inline-block value.

An inline-block element is a block element rendered inline with other block elements. Internally,
each block element will render as usual with all block, inline, and floating settings it needs. Consider
the following HTML snippet:

<ul id="container">

 Block #1

 Block #2

 Block #3

Now style the elements as follows. The results are shown in Figure 3-5.

li {

 display: inline-block;

 width: 100px;

 min-height: 100px;

 background-color: green;

 color: white;

 vertical-align: top;

}

 CHAPTER 3 Making sense of CSS 63

FIGURE 3-5 Inline-block elements.

It should be noted that inline-block elements, if aligned vertically to the top, also work well in the
case of multiple rows of different heights. When not floating, in fact, the browsers always use a single,
logical horizontal line to render on.

The drawback of inline-block elements is that they consider any literals in the HTML source. This
means that blanks you have in the source (in case of fixed widths) may cause an undesired wrap to the
next line. To be on the safe side, you should consider writing your HTML on a single line with no extra
blanks or carriage returns. This may be required only for the section of the page that uses elements
styled as inline-blocks.

Note As the content of Figure 3-5 may suggest, inline-block elements may be very helpful
to arrange the style of the Windows 8 user interface using HTML and CSS.

Spacing and the boxing model
CSS builds a relatively rich and articulated infrastructure around each HTML element. This
 infrastructure is known as the boxing model and is featured in Figure 3-6.

FIGURE 3-6 The CSS box model.

The boxing model defines what browsers expect to find around each single HTML element. The
first surrounding box is the padding box, and it is controlled by the padding property. Next, there’s
the border box used to frame an element; border settings are controlled via the border property.

In addition, each element can be placed in another larger box, known as the margin box. Margins
are controlled by the margin property and determine the distance between the boxed element and
its neighbors.

64 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Defining padding
The padding property defines how many pixels should be added around the element. Additional
pixels inherit the same background settings of the element. You typically use padding to add some
spacing around the actual content (that is, text) of the element, as shown in Figure 3-7.

FIGURE 3-7 The effect of padding HTML elements.

If you set the padding property, then padding is even all around the element. However, you can set
padding for each side of the element. You do that through properties such as padding-top, padding-
left, padding-bottom, and padding-right.

Defining borders
You can control borders of an HTML element through the border property. If you set this property,
then each side of the element is styled in the same way. To configure each side separately, you use
specific subproperties such as border-top, border-left, border-bottom, and border-right.

While styling a border, you can indicate width, color, radius, and style. Each of these aspects has
its own subproperty such as border-width, border-color, border-radius, and border-style. You express
width and radius (for rounded corners) in pixels, while using CSS color strings to express colors. Here’s
an example:

.rounded-button {

 color: #ffffff; /* white */

 background: linear-gradient(to bottom, blue, white 80%, red);

 border-radius: 5px;

 border-width: 1px;

 border-color: #ffffff; /* white */

}

An element border can be a solid, dotted, or dashed line. Just solid, dotted, and dashed are feasible
values for the border-style subproperty.

Defining margins
In HTML, the margin is the distance that exists between a given element and its neighbors. Unlike
padding, the space indicated by margins is not rendered as part of the element. That area displays
any underlying content belonging to parent elements.

You express margins in pixels, and you can set margins independently through usual
 subproperties: margin-top, margin-left, margin-bottom, and margin-right. For example, if you set

 CHAPTER 3 Making sense of CSS 65

margin-bottom to 10px, then you are extending the height of the element by 10 pixels. These 10 extra
pixels of height are rendered with a transparent background though.

Defining width and height
By default, HTML elements take up just the minimum space they need to render their content.
In some cases, you might want to assign them a fixed size, whether absolute or relative. The
 properties you need to do this are width and height. You typically set width and height using pixels or
 percentages.

body {

 width: 100%;

}

Here’s a more interesting example of CSS settings that produce a layout like the one shown in
Figure 3-8. First start from the HTML:

<body>

 <header>

 Header of the page

 </header>

 <div id="main">

 main

 </div>

</body>

And here’s the related CSS content:

body {

 margin: 0px;

}

header {

 width: 100%;

 height: 80px;

}

#main {

 width: 930px;

 height: 100%;

 margin: 0px;

 margin-left: auto;

}

66 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 3-8 Width and height used to create a nice (and common) page template.

The BODY element sets its margin to 0 pixels, meaning that empty space will be left between the page
content and browser’s edges. The HEADER element takes up the entire width of the screen and just
80 pixels of the height. The DIV, with an ID of main, gets the entire height of (remaining) screen and limits
itself to a fixed 930 pixels width. More interestingly, the margin of the DIV is first set to 0 and then the left
margin is overridden to the special value of auto, meaning that the margin will be adjusted automatically
by the browser to center the content.

Note When it comes to width and height, you also have min/max subproperties to define a
minimum/maximum width or height. The properties are min-height, max-height, min-width,
and max-width. It should also be noted that width and height properties refer to the size of
the content and don’t count for padding, borders, and margins.

Advanced CSS scenarios

So far, you have seen only basic CSS selectors—ID, tag names, and custom classes. However, the CSS
syntax for selectors is much more rich and sophisticated than this. A bunch of built-in pseudo-classes
and operators can be combined together and define a sort of powerful query language. In this way,
you can select a very specific set of HTML elements to style.

CSS pseudo-classes
You use CSS pseudo-classes to add special query capabilities to some selectors. The syntax to apply
pseudo-classes looks like the following:

 CHAPTER 3 Making sense of CSS 67

selector:pseudo-class {

 ...

}

Let’s review a few examples of common pseudo-classes.

Anchor pseudo-classes
In a nutshell, pseudo-classes are like smart query operators you can use on certain HTML elements
to further restrict the application of the style. Some pseudo-classes are generic and can be applied
to nearly all selectors; some, instead, only make sense if applied to specific elements. Let’s review
pseudo-classes that work well with HTML anchors.

Note Anchors are one of the most basic elements of HTML. Anchor is the more technical
name used to refer to a hyperlink, and the reason why the A is used to identify the element.
An anchor is made of two main parts: display text and underlying URL. When browsers
 encounter anchors, they typically render the display text underlined and show the linked
URL in the status bar. When the user clicks the anchor, the browser navigates to the
 specified URL.

Usually, browsers render any occurrence of the A element in different ways depending on the
status—the link was visited, is active, or the mouse is hovering. Each state is mapped to a different
pseudo-class. Here’s how to fully style an anchor:

a {

 text-decoration: none; /* no underlining */

 color: #aaaa66;

 padding: 0px;

}

a:visited {

 text-decoration: none; /* no underlining */

 color: #aaaa66;

}

a:hover {

 text-decoration: underline;

 background-color: orange;

 color: black;

 padding: 2px;

}

a:active {

 text-decoration: none; /* no underlining */

 color: #aaaa66;

}

68 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The visited pseudo-class defines the look and feel of the anchor once it has been clicked at least
once. The hover class refers to the mouse hovering on the anchor. Finally, the active class refers to the
look and feel of the anchor when it holds the input focus. The previous example manages to render
the anchor always in the same way, and gives it a different color scheme when the mouse is over it.

Pseudo-classes for input elements
Sometimes you just want a different style for input fields (that is, text boxes) that are disabled,
checked, or focused. CSS makes it fairly easy to do this through a bunch of ad hoc pseudo-classes.
You can use the checked class to select all check boxes or radio buttons that are currently checked.
Likewise, you can use disabled and enabled classes to query for related elements. The focus class,
instead, signals which element is currently holding the input focus.

The following example automatically switches the background color of an INPUT text field to
reflect the focused state:

input[type=text]:focus {

 background-color: orange;

 color: black;

}

The previous code snippet contains an interesting construct that you have not met before: an
expression in square brackets. That’s an attribute pseudo-class.

Attribute pseudo-classes
An attribute pseudo-class applies to an existing CSS selector and restricts the output to only elements
that contain a given attribute with a given value. Let’s look at the previous CSS snippet more closely.

input[type=text]:focus {

 background-color: orange;

 color: black;

}

The [type=text] selector applies to INPUT elements and it restricts the list of INPUT elements
to only those where a type attribute exists and has a value of text. Table 3-1 lists the most popular
 attribute selectors.

TABLE 3-1 Popular attribute selectors

Selector Description

[attribute] Elements that contain an attribute with the specified name.

[attribute = value] Elements that contain an attribute with the specified name and value.

[attribute *= value] Elements that contain an attribute with the specified name whose value contains
the specified value.

 CHAPTER 3 Making sense of CSS 69

Selector Description

[attribute != value] Elements that contain an attribute with the specified name whose value is
 different from the specified value.

[attribute ^= value] Elements that contain an attribute with the specified name whose value begins
with the specified value.

[attribute $= value] Elements that contain an attribute with the specified name whose value ends with
the specified value.

Pseudo-classes for retrieving child elements
Sometimes you just want to pick up some child elements of a given selector. The first-child pseudo
class returns the first child element, whereas last-child returns the last one. In addition, you can pick
up the nth child of a given element using the nth-child(n) class, where n indicates the index of the
child element to select.

Compound selectors
As you may have guessed, in CSS selectors can be composed together to form queries of any
 reasonable complexity. You can concatenate selectors using a blank, the comma, or other ad hoc
symbols to define queries. Table 3-2 illustrates the most common scenarios.

TABLE 3-2 Popular compound selectors

Selector Example Description

element element div a Selects all A elements contained in a DIV elements.

element, element div,p Selects all DIV elements and all P elements.

element > element div > a Selects all A elements directly children of a DIV element.

element + element div + a Selects all A elements placed immediately after a DIV element.

In addition, consider the following example:

div.headline a {

 ...

}

The div.headline expression indicates all DIV elements given a CSS class named headline. The
following a just restricts the query to all A elements contained within any subtree rooted in a DIV
 element with a class of headline.

Note When it comes to classes and pseudo-classes, names are case-insensitive.

70 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Media Queries
When you attach a CSS file to an HTML document through the LINK element, you also have the
 option of selecting the medium where the style will be applied. You indicate the medium through the
media attribute. If no media attribute is specified, then browsers understand that the same CSS file
should be used in any possible scenario.

In the beginning, the role of the media attribute was limited to using different CSS files for viewing
and printing a given HTML page. Originally, feasible values for the media attribute were screen, print,
and all.

More recent browsers support a true query language in the media attribute that allows you to
select the CSS file to apply it to based on the browser’s runtime conditions.

Dynamic selection of the CSS file
Here’s an example of how to dynamically link CSS files to an HTML page using media queries.
The idea is that a page offers a number of choices and the browser dynamically picks up the most
 appropriate choice given its current status.

<link type="text/css"

 rel="stylesheet"

 href="tiny.css"

 media="only screen and (max-width: 320px)">

<link type="text/css"

 rel="stylesheet"

 href="large.css"

 media="only screen and (min-width: 321px)">

Interestingly, modern browsers are also able to adjust their selection of the CSS file as dynamic
conditions change. With reference to the above code snippet, it means that the browser will
 automatically apply tiny.css when the width of the screen is up to 320 pixels and switch to large.css
when the window is resized to at least 321 pixels.

The media queries mechanism serves two purposes. On one hand it gives you a chance to make
pages that adapt to the current screen size; on the other hand, it represents a simple, but effective,
tool to give your pages a mobile interface at nearly no cost. In the simplest case, in fact, a mobile
device is just a browser with a smaller screen size.

Syntax of Media Queries
As mentioned previously, a browser’s runtime conditions can affect the selection of the CSS file. Let’s
briefly review which runtime information you have access to in order to decide about the CSS file.
First and foremost, a media query expression begins as a way to force older browsers to ignore the
 statement. Table 3-3 lists the main media query properties.

 CHAPTER 3 Making sense of CSS 71

TABLE 3-3 Popular media query properties

Property Description

width Returns the width of the current browser view. The property supports min/max
prefixes.

height Returns the height of the current browser view. The property supports min/max
prefixes.

orientation Returns “portrait” when the value of the height property is greater or equal to the
value of the width property. Otherwise, it returns “landscape.”

The orientation property, for example, allows you to determine (more specifically than with just
width) whether the page is being viewed in portrait or landscape mode.

In addition, you can use AND and NOT operators to build up expressions as complex as you like
them to be.

Summary

CSS is the language used to add graphical styles to HTML pages. It is based on a collection of
 commands that select one or more HTML elements and alter their default appearance. You identify
target elements via selectors and style them through a collection of property/value assignments.

In this chapter, you learned how to define selectors and explored the most important properties
you might want to set in order to achieve great results with your pages.

As a developer primarily interested in Windows 8 applications (as opposed to general web
 development), you will (probably) be using readymade Windows 8 style sheets and conventions
in most of your work. At any rate, the content of this chapter should have given you the basics to
 understand any further CSS feature you encounter along the way.

To complete the introductory part of the book for web development, let’s now have a look at the
basics of the JavaScript programming language.

 73

Chapter 4

Making sense of JavaScript

Grasp the subject, the words will follow.
—Cato, the Elder

JavaScript is probably a language with nine (or even more) lives. JavaScript made its official debut
in 1996 as part of the Netscape browser and happily survived the first 15 years of the Internet era.

It was originally supposed to be a simple language targeted at web authors willing to make their
HTML pages more responsive and attractive. JavaScript was never designed to be a full-fledged
 programming language, but rather something that was easy to work with.

And in the end it worked very well.

JavaScript has a remarkably low barrier to entry and it is flexible enough to enable experts to do
nearly anything with it. Today, knowing JavaScript is a critical skill for essentially all developers; it is
easy to get acquainted with, but unfortunately, it’s also not trivial to master.

With the release of Windows 8, Microsoft makes HTML5 and JavaScript a first-class platform for
building applications. Developers use HTML5 to build layout and CSS to style it. Developers also use
JavaScript to manipulate page elements. At the same time, though, developers have access to a bunch
of system-provided libraries that offer user interface widgets and components that allow developers
to access capabilities specific to Windows 8.

It is expected that developers using JavaScript to write Windows 8 applications are primarily
 interested in binding freshly downloaded data to user interface elements. It doesn’t mean, however,
that you can’t use JavaScript to implement at least a few bits of business logic. In general, though,
keep in mind that the more business logic you must express in JavaScript, the less appropriate
 JavaScript may be as your choice of programming language.

This chapter aims at revisiting the foundation of the JavaScript language, and discusses a few basic
patterns for organizing JavaScript code from within a Windows 8 application.

http://www.quotationspage.com/quote/27616.html

74 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Language basics

The JavaScript language relies on a solid standard, as defined by the ECMA-262 and ISO/IEC
16262:2011 papers. Unlike what happens with other popular programming languages like C#,
 JavaScript code is not compiled before execution. Instead, JavaScript code is interpreted and then
executed on the fly. For this reason, JavaScript programs need a runtime environment (the engine that
translates and executes the code you write) in order to run. On the Windows 8 platform, JavaScript
is supported by a runtime environment named Chakra that, like the Buddhist force it is named after,
pushes vital energy throughout the body of HTML pages.

Note The majority of programming languages (such as C#, Visual Basic, C++, and Java) let
developers express an intended behavior by using a high-level syntax. The code expressed
in this way, though, must first be “compiled” to a lower-level language that is much closer
to the actual behavior of the machine. Put another way, the programming language
 commonly used by developers is a mere abstraction over the behavior of the machine.
A classic compiled language needs a special tool—the compiler—to transform high-level
 syntax into lower-level syntax. You can’t run your program until you have successfully
 compiled it. Other languages—such as JavaScript—are not compiled. This doesn’t mean
they don’t need any adaptation to run; a non-compiled (interpreted) language simply has
its “compilation step” performed during execution just before a given line is executed.

Let’s now navigate through the basics of the language, digging out aspects of the type system, the
use of variables and functions, and good and bad programming habits.

The JavaScript type system
The JavaScript type system is composed of a few primitive types and a few built-in objects. When you
write JavaScript code, however, the range of types you can work with is actually much larger.
In addition to built-in objects, you can also rely on objects provided by the host as well as objects
you import from externally linked frameworks. For Windows 8 applications, in particular, you need to
import the Windows 8 JavaScript (WinJs) library—the gateway to the native Windows 8 application
programming interface (API).

This chapter, though, focuses on the native type system as defined in the aforementioned
 JavaScript ECMA-262 standard definition.

Primitive types and built-in objects
In JavaScript, the primitive types are number, string, Boolean, undefined, Object and Function. Built-in
objects are Array, Math, Date, and RegExp, plus a few objects that are just functionally richer wrappers
for some primitive types. Such wrapper objects are named String, Boolean, and Number, and they just
add more capabilities to the corresponding primitive type.

 CHAPTER 4 Making sense of JavaScript 75

The type number represents floating point numbers with zero or more decimal places. There are
no separate types for concepts such as integers, long integers, singles, doubles, or bytes. One special
number, NaN, is reserved for numbers that don’t make mathematical sense—it is a variable that
contains the result of a math operation that makes no sense. In fact, the name NaN is the acronym of
Not-A-Number. The built-in Number object just wraps a primitive numeric value and adds a method
to convert the number to a string.

The type string represents a sequence of zero or more characters. The content of a string is
 bracketed in matching pairs of single or double quotes. The built-in String object adds a few methods,
including substring, which extracts a segment of the string between two specified indexes, and
 toLowerCase, which converts characters in the string to lowercase.

Table 4-1 summarizes other built-in objects.

TABLE 4-1 JavaScript built-in objects

Built-in object Description

Array Supplies a rich programming interface for a collection of JavaScript objects. You
can access members by index and also add and remove existing elements.

Date Supplies a variety of handy methods to work with a date, including getting and
setting individual elements such as day, month, or year. It also works to deal with
time information.

Math Supplies an interface to perform a variety of mathematical tasks ranging from
getting random numbers to power, and from rounding to min/max and absolute
value functions.

RegExp Supplies regular expressions.

The JavaScript global object
All JavaScript objects inherit from a unique global super object, and subsequently, properties and
functions of the global object augment all native and custom objects. In particular, the global object
features the following properties:

NaN, which returns the value for Not-A-Number.

Infinity, which returns the value for infinity.

Table 4-2 lists the functions available on the global object.

76 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

TABLE 4-2 JavaScript built-in objects

Function Description

eval Gets code in the form of a string and executes it on the fly.

escape / unescape Encodes and decodes special characters in a plain string.

encodeUri / decodeUri Encodes and decodes special characters in a URI string.

isNaN Returns true if the specified value is Not-A-Number.

isFinite Returns true if the specified value is infinity.

parseInt Parses a string and tries to extract an integer number out of it.

parseFloat Parses a string and tries to extract a floating point number out of it.

It should be noted that any object, value, or constant you happen to use in your JavaScript coding
that doesn’t seem to belong to any objects of yours is ultimately available because it’s exposed by the
global JavaScript object.

Null vs. undefined
When it comes to null-ness, JavaScript introduces a subtle difference that many higher-level
 languages such as C# and Java miss. As you’ll see more in detail in a moment, a JavaScript variable
is not bound to a fixed type. Subsequently, the variable is not bound to any type until it is explicitly
 assigned a value. At this stage, the type of the variable is said to be undefined.

In JavaScript, undefined is seen as a special type rather than as a value. If you check the type of an
unassigned variable using the typeof operator, you get the string undefined. If you instead attempt to
evaluate the content of an unassigned variable, you get null. Pay attention to the following code:

var x; // therefore the type of the variable is "undefined"

var y = null;

What happens if you compare x and y?

JavaScript has two equality operators: the double equals sign (==) operator and the triple equals
sign (===) operator. If you use the == operator, both expressions are evaluated and the resulting
values are compared. However, if you use the === operator, then the types of the values are also
compared. In reference to the previous code snippet, if you compare x and y using the == operator
then you get true, meaning that the undefined value of x ultimately evaluates to null, which matches
the value assigned to y.

In contrast, if you compare x and y using the === operator, then you get false: the two variables
hold the same value but are of different types.

 CHAPTER 4 Making sense of JavaScript 77

Dealing with variables
In JavaScript, a variable is simply a storage location and is not restricted to always storing values of
a fixed type. When assigned a value, variables take on the type of the data being stored. For this
reason, a JavaScript variable may change its type quite a few times during its lifespan, as shown in the
following code snippet:

var data = "dino"; // now data is of type string

data = 123; // now data is of type number

JavaScript variables spring into existence the first time they’re used; until then, they hold a value of
null and their type is undefined.

Local variables
When defining variables, you should always use the var keyword as a hint to the parser and yourself.
The var keyword is not strictly required, but it is highly recommended to keep the scope of the
 variable under strict control.

Variables defined within the body of a function are scoped to the function—and are therefore
local variables—only if they have been declared using the var keyword. If you omit var, variables are
treated as global, but remain undefined until the function executes once.

You should also note that JavaScript lacks the concept of block-level scope that you find in many
other programming languages. Consider the following code:

function foo(number) {

 var x = 0; // Variable x is local to the function and not visible

outside

 if (number >0) {

 var y = number; // Variable y is NOT local to the IF block;

 ...

 }

}

The variable y is not local to the if block, and its content is also accessible from outside the block.
However, because it is defined with var, the variable is local to the function. It is important to note
that if you miss the var keyword in the if block, what you might expect to be a temporary variable will
be promoted to the much higher rank of a global variable!

The same concept just shown for an if statement also applies to for and while loops.

78 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Global variables
Variables declared in the global scope—that is outside any function body—are always global regard-
less of whether or not var is used. Consider the following snippet to experience the subtle differences
between local and global, represented by the var keyword:

var rootServer = "http://www.expoware.org/"; // global variable

section = "mobile"; // global variable

function doSomething() {

 var temp = 1; // local variable

 mode = 0; // global variable, but undefined

until called

}

The JavaScript runtime environment stores global variables as properties of a hidden object
 referenced through the this keyword. Note that browsers often mirror the global object via the
 window object.

protecting the global namespace
In nearly any programming language, coding is (much) easier if you can use global variables. Global
variables, however, have downsides too. A critical downside is the risk of name collisions between
variables defined in different parts of your code, third-party libraries, advertising partners, and
 analytics libraries. A name collision combined with the dynamic typing of JavaScript variables may
wind up inadvertently modifying the state of the application—with potentially unpleasant anomalies
at run time.

Consider how easy it is to unwittingly create global variables: miss a var and you get a global;
 mistype a variable name in an assignment and you get a fresh new global. This latter feature is
 possible because JavaScript allows you to use a variable without declaring it first.

There is a workaround. When you need to use global variables, a good technique is to create them
as properties of a wrapper object. You place code similar to the following in a JavaScript file that you
then link from every page:

var Globals = (function() { return this; }());

Next, you make a point of referencing whatever global object you use via the Globals.Xxx
 expression, where Xxx is the name of the global variable you want to use. In this way, at least all of
your global variables will stand out in code.

Note JSLint (http://www.jslint.com)—an online tool for static analysis of JavaScript code—
does help in catching anti-patterns in your code, including the lack of var keywords.

 CHAPTER 4 Making sense of JavaScript 79

Variables and hoisting
Hoisting is a JavaScript feature that allows developers to declare variables everywhere in the scope
and then use them everywhere. In JavaScript, you are allowed to first use the variable and then
 declare it (such as, var) later. The overall behavior is just as if the var statement were placed at the top.
Here’s an example:

function() {

 mode = 1;

 ...

 var mode;

}

Historically, this feature was introduced to keep the entry barrier to JavaScript for non-expert
developers as low as possible. When you use JavaScript to write significant portions of code, however,
hoisting is a clear source of confusion and becomes error prone. It’s a good habit to place all your
variables at the top of each function, even better if you place them in a single var statement as shown
below:

function() {

 var start = 0,

 total = 10,

 index;

 ...

}

Note that having multiple var statements, instead, is neither bad nor wrong. However, sticking to
the single var approach helps force you to always define a variable before you use it.

Dealing with objects
JavaScript is not usually catalogued as an object-oriented language, at least not at the same level as
Java and C#. The primary reason for this is the definition of an object that you get from JavaScript is
different from the commonly accepted idea of an object that you get from classic object-oriented
languages.

Structure of JavaScript objects
In JavaScript, an object is a dictionary of name/value pairs. The blueprint of the object is implicit and
you have no way to access it. A JavaScript object usually only has data, but you can add behavior. The
(explicit) structure of an object may change at any time—for example, you can add new methods and
properties at run time. The implicit structure never changes. Here’s how you can add a new property
to an existing object:

var theNumber = new Number();

theNumber.type = "Number";

80 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 Adding a member to a JavaScript object works only for that particular instance. If you were now to
create another instance of the Number object, the property type would not be available for the new
Number object. You can work around that problem by using prototypes.

The prototype common property
If you want to add a new member to all instances being created of a given type, you have to add the
member to the object’s prototype. Here’s how to add a type property to all the numbers so that you
gain more control over the effective type of the object.

if (typeof Number.prototype.type === 'undefined') {

 Number.prototype.type = "Number";

}

Important The example you just examined, and specifically the use of a custom type
 property, is not coincidental. In JavaScript, you can use the typeof operator on a variable
name to discover the type of an object currently stored in the variable. However, most
of the time all you get back as a response is the word “Object.” There is no easy way to
 distinguish between, for example, strings and numbers. For this reason, the use of a custom
type property makes even more sense.

Creating new object instances
You can use the Object type to create aggregates of values and methods, which is the closest you
can get in JavaScript to standard object-orientation, such as C#. Here’s a possible way to create a new
object:

var dog = new Object();

dog.name = "Jerry Lee Esposito";

In general, the direct use of the constructor of an Object is disregarded. A better approach entails
using an object literal, as shown below:

var dog = {

 name: "Jerry Lee Esposito",

};

Using the constructor of an Object poses some performance issues to the JavaScript interpreter,
which has to resolve the scope of the constructor call and look up a potentially large stack.
In addition, using the constructor directly also doesn’t transmit the sense of objects as dictionaries,
which is a key point of JavaScript programming.

 CHAPTER 4 Making sense of JavaScript 81

Dealing with functions
In JavaScript, a function is a bit of code bundled up into a block and optionally given a name. If a function
is not given a name, it is called an anonymous function. Functions represent a scope and are treated like
objects; they may have properties and can be passed around as arguments and interacted with.

You use functions for two main reasons: for defining repeatable behavior, and for creating custom
objects.

Named functions for repeatable behavior
A named (as opposed to anonymous) function is defined as follows:

function doSomeCalculation(number) {

 ...

 return number;

}

Defined in this way, the function is globally visible and is interpreted as a new member added to
the JavaScript global object. You can call the function from anywhere in your code, as shown below:

var result = doSomeCalculation(3);

JavaScript functions can be called with any number of arguments—regardless of the declared
number of parameters. In other words, you may have a function like doSomeCalculation, which
 declares just one argument (number), but you can invoke it by passing any (greater) number of
 arguments.

var result = doSomeCalculation(1, 2);

Although browsers may tolerate this type of coding, it is still a bad programming practice.
 However, you can leverage such flexibility to easily define functions that deliberately accept a variable
number of arguments.

In JavaScript, a function can access declared parameters by name or by position using a predefined
array called arguments. This array returns the actual list of parameters passed to the function. In this
way, for example, the function below can accept any number of arguments and process them.

function doSum() {

 var result = 0;

 for(var i=0; i<arguments.length; i++)

 result += arguments[i];

 return result;

}

82 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Both calls shown below are acceptable for the function doSum.

var r1 = doSum(1, 2, 3);

var r2 = doSum(4, 5);

A function that accepts a variable number of arguments is perhaps more clearly defined with no
explicit formal parameters. However, you can also have some parameters declared and still accept and
process any number. At any rate, the arguments array returns the effective list of parameters found in
the call—in the order in which they are listed.

Immediate functions and objects
In JavaScript, an immediate function represents a piece of code that is defined and executed in the
same place. You usually place the definition of a function somewhere (say, in a distinct file) and
 invocation goes somewhere else. This approach works well when you expect to use the function
 multiple times and from a variety of places. An immediate function is an excellent trick for defining
any work that needs be done only once.

An immediate function has its definition wrapped in parentheses with the list of parameters placed
at the end, as shown below:

var result = (function() {

 ...

}());

An expression where an immediate function is used, indicates that a value—not the function
itself—is being returned. If the function needs parameters, the previous code can be rewritten as
 follows:

var result = (function(x, y, z) {

 ...

}(1, 2, 3)); // 1,2,3 are actual values for x,y,z

Similarly, you can have immediate objects. An immediate object is a function defined in the same
place where one of its methods is invoked and executed. An immediate object has its literal-based
definition wrapped in parentheses, as below:

({

 init: function() {

 // perform initialization tasks

 },

 }).init(...);

Both immediate objects and functions create a scope sandbox that prevents their local variables
from polluting the global namespace.

 CHAPTER 4 Making sense of JavaScript 83

So should you use immediate functions or immediate objects? That’s mostly up to you, but it
 ultimately boils down to how complex your code is (or that you anticipate it’s going to become).
For very complex tasks, an immediate object is perhaps preferable because it allows you define
 properties and split implementation into multiple methods. An immediate function is something
simpler that works well for any code expressed as a plain sequence of statements.

extending existing objects with behavior
Earlier, this chapter discussed how properties can be added to an object’s prototype so that each new
instance of that object is augmented with those new properties. Nearly the same considerations can
be made for functions, which can be used to augment an existing object definition with behavior.
As an example, consider the Number object again. The following code shows how to add a new
 random member that returns a random number greater than the specified minimum.

// This code needs to run once--so we add it as an immediate function.

(if (typeof Number.prototype.random === 'undefined') {

 Number.prototype.random = function(min) {

 var n = min + Math.floor(Math.random() * 1000);

 return n;

 };

}());

After this code has run once, you are free to use the following function:

function doWork() {

 var n1 = new Number().random(0);

 var n2 = new Number().random(10);

 alert("Numbers are " + n1 + " and " + n2);

}

Note Augmenting the prototype of native objects is considered a bad practice because it
makes the code less predictable and may hurt maintainability. This consideration, though,
applies mostly to team development. If you’re writing code for yourself, this point is less
important.

Constructor functions
As mentioned earlier, there are two main reasons for using functions: defining repeatable behavior
and creating custom objects. Here, you’ll tackle the second scenario, starting with a look at the
 following code:

var Dog = function(name) {

 this.name = name;

 this.bark = function() {

84 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 return "bau";

 };

};

What you have here is a new object named Dog. Early on, when talking about objects, you also
created something similar:

var dog = {

 name: "Jerry Lee Esposito",

};

The big difference here is that the latter code snippet represents a snapshot of only data; the
 former code snippet, instead, is a function with data and behavior.

So how would you use the Dog object? To use the Dog object, you need to instantiate it using the
classic new constructor, as shown below:

var jerry = new Dog("jerry");

What if you miss the new operator and go with something like this?

var jerry = Dog("jerry");

The tricky thing is that if you forget to use the new operator, you won’t get any exception and your
code will just run. However, any action you perform on Dog (for example, setting the name property)
will be executed on the this object. Without the new operator in front, that would be resolved as the
global JavaScript object. This means that you are polluting the global namespace of the JavaScript
interpreter. Here’s a safe countermeasure that doesn’t create issues whether or not you use the new
operator:

var Dog = function(name) {

 var that = {};

 that.name = name;

 that.bark = function() {

 return "bau";

 };

 return that;

};

The difference is that you now explicitly create and return a new object—an object named that.
This is familiarly known as the “Use-That-Not-This” pattern.

 CHAPTER 4 Making sense of JavaScript 85

Important This is also the most appropriate way to create your own aggregates of data
and behavior (objects) by using an explicit constructor without the need to use the new
 operator. In this way, you get very close to object-oriented components in JavaScript.

Having fun with callback functions
Callbacks are just functions passed as an argument. Code that receives a callback function can call the
calling code back when appropriate. For example, suppose you have a generic function that holds a
collection of numbers. At various times you need to loop over the collection and perform different
operations, such as sum and multiplication. Should you really define two distinct (but fairly repetitive)
functions, as shown below?

function sumAllNumbers() {

 // STEP 1: COLLECT INPUT DATA

 var numbers = new Array();

 for (var i = 0; i < arguments.length; i++) {

 numbers.push(arguments[i]);

 }

 // STEP 2: PERFORM OPERATION

 var result = 0;

 for (var i = 0; i < numbers.length; i++) {

 result += numbers[i];

 }

 // STEP 3: DISPLAY RESULTS

 alert("SUM result is: " + result);

}

function multiplyAllNumbers() {

 // STEP 1: COLLECT INPUT DATA

 for (var i = 0; i < arguments.length; i++)

 numbers.push(arguments[i]);

 // STEP 2: PERFORM OPERATION

 var result = 1;

 for (var i = 0; i < numbers.length; i++) {

 result *= numbers[i];

 }

 // STEP 3: DISPLAY RESULTS

 alert("MULTIPLICATION result is: " + result);

}

86 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Both functions consist of three main steps. The first step is repeated in both functions; the
 second step is specific to each function; and the third step does the same thing in each case, but
with different data. Having functions defined in this way simply works. If getting results is all you are
 interested in, then feel free to stop here.

The whole point is that a simplistic solution like this may possibly work well in a simple scenario.
As complexity grows, you may end up with a great deal of duplicated code—which is bad because it
forces you to make changes in several places and if you miss making the change in one place you can
introduce bugs that can be truly hard to find and fix. Callback functions help by making the previous
code not only smaller, but also far easier to read.

To illustrate the point, you’ll start by creating a single function that orchestrates the various steps
for both the sum and multiplication; you can call this function handleNumbers.

function handleNumbers(operationCallback) {

 // STEP 1: COLLECT INPUT DATA

 var numbers = new Array();

 for (var i = 1; i < arguments.length; i++) // start from 1 to skip callback

function

 numbers.push(arguments[i]);

 // STEP 2: PERFORM OPERATION

 var result = operationCallback(numbers);

 // STEP 3: DISPLAY RESULTS

 alert(result);

}

Now define a couple of highly specific functions: one that sums and one that multiplies all received
parameters.

function doSum(numbers) {

 var result = 0;

 for (var i = 0; i < numbers.length; i++) {

 result += numbers[i];

 }

 return result;

}

function doMultiply(numbers) {

 var result = 1;

 for (var i = 0; i < numbers.length; i++) {

 result *= numbers[i];

 }

 return result;

}

 CHAPTER 4 Making sense of JavaScript 87

At this point, the invocation code becomes:

handleNumbers(doSum, 1, 2, 3, 4);

handleNumbers(doMultiply, 1, 2, 3, 4);

With this structure in place, adding yet another operation on the array of numbers is simply a
matter of creating a function that performs the desired operation. There’s no need to worry about
collecting numbers or displaying results.

Contract-based callback functions
If you strictly compare the actual effects of the two versions of the code, you should note a
 difference. In the former version, where repetitive code was used you could output a message saying
something like “SUM result is XXX.” In the more generic and callback-based solution, all you could
show to the user was the bare numeric result.

It may sound like a minor point, but it actually isn’t.

The problem is that the output message needs to incorporate some information—the name of
the operation—that can be provided only by the injected function. How can you force a function like
doSum to return two values—the actual result of the operation plus the name of the operation? You
need to define a contract for the callback and actually upgrade the callback from the rank of a simple
function to the higher rank of an object.

First, you define the contract (or interface) that you expect the callback to have. The contract
defines all the information that the caller needs. In this case, the caller probably expects to find a
method to calculate a number (call it execute) and a string to indicate the name of the operation
(call it name). Here’s how you would rewrite the handleNumbers function:

function handleNumbers(operation) {

 // STEP 1: COLLECT INPUT DATA

 var numbers = new Array();

 for (var i = 1; i < arguments.length; i++)

 numbers.push(arguments[i]);

 // STEP 2: PERFORM OPERATION

 var result = operation.execute(numbers);

 // STEP 3: DISPLAY RESULTS

 alert(operation.name + " result is " + result);

}

You now define two distinct objects—Sum and Multiplication.

var Sum = function () {

 var that = {};

88 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 that.name = "SUM";

 that.execute = function (numbers) {

 var result = 0;

 for (var i = 0; i < numbers.length; i++) {

 result += numbers[i];

 }

 return result;

 };

 return that;

}

var Multiplication = function () {

 var that = {};

 that.name = "MULTIPLICATION";

 that.execute = function (numbers) {

 var result = 1;

 for (var i = 0; i < numbers.length; i++) {

 result *= numbers[i];

 }

 return result;

 };

 return that;

}

Finally, the code to invoke operations looks like what follows:

handleNumbers(new Sum(), 1, 2, 3, 4);

handleNumbers(new Multiplication(), 1, 2, 3, 4);

Using objects in lieu of functions gives you a lot more programming power because you are not
limited in any way in terms of the contract that you can support.

Anonymous Functions
So far, this chapter has focused mostly on named functions. What about unnamed functions
 (anonymous functions), instead? In JavaScript, anonymous functions are the pillar of functional
programming. An anonymous function is a direct offshoot of lambda calculus or, if you prefer, a
language adaptation of old-fashioned function pointers. Here’s a simple example of an anonymous
function:

function(x, y) {

 return x + y;

}

The only difference between a regular function and an anonymous function is in the name (or lack
thereof).

 CHAPTER 4 Making sense of JavaScript 89

Why are anonymous functions becoming so popular? The primary reason is that anonymous
 functions allow you to define code in place—without the need to define a named function
 somewhere. The drawback of anonymous functions is that they are not reusable. As long as you need
to pass a one-off piece of code as an argument, then using an anonymous function is more than
 acceptable. However, if the function might be used more often, a named function is preferable. Just
for the sake of illustration, here’s a rewrite of the previous code using anonymous functions:

// Perform a sum

handleNumbers(function(numbers) {

 var result = 0;

 for (var i = 0; i < numbers.length; i++) {

 result += numbers[i];

 }

 return result;

},

1, 2, 3, 4);

Readability is not always ideal; but for very basic code, this approach can still work.

Organizing your own JavaScript code

So far, you have focused primarily on the syntactic aspects of the JavaScript language, and you’ve
 explored JavaScript’s object-oriented capabilities. It is now about time to shift to how you use
 JavaScript code from within HTML pages, and specifically, in the context of Windows 8 applications.

Any JavaScript code you use in an HTML page is always invoked in response to an event that is
either fired by the browser or fired in response to some user action. Hence, the first point to focus
on is how to define event handlers in an HTML page. Next, you need to know a little about how to
organize the code.

Linking JavaScript code to pages
First and foremost, an event handler is a JavaScript function invoked in response to an event. The
event can be fired by the browser—for example, the browser fires an event when the page has fully
loaded—or in response to an action by a person—for example, when a user clicks a button. Event
handlers must be associated with events to produce any visible effects. HTML defines a number of
onXXX attributes (where XXX is the name of the event, such as click or load) that you can set in the
HTML markup to associate the event with the name of a JavaScript function.

Unobtrusive JavaScript is a pattern that suggests a more effective way of achieving the same result.
Unobtrusive JavaScript is also the preferred way of binding code to events in Windows 8. Let’s find
out more.

90 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

event attributes of an HTML element
For years, it has been common to write HTML pages with input fields and buttons explicitly attached
to JavaScript event handlers. Here’s a typical example:

<input type="button" value="Click me" onclick="handleClick()" />

From a purely functional perspective, there’s nothing wrong with this code—it works as expected:
the onclick attribute associates the click action with the handleClick JavaScript function, so that
 function then runs whenever a user clicks the button. This approach, however, is largely acceptable
only when you’re using JavaScript to spice up simple HTML pages. It becomes unwieldy when the
amount of JavaScript code represents a significant portion of the page or the view.

In a way, unobtrusive JavaScript is the script counterpart of CSS classes. With CSS, you write plain
HTML without including inline style information. Next, designers style elements using CSS classes.
Likewise, for unobtrusive JavaScript, you avoid using the in-tag event handler attributes (onclick,
 onchange, onblur, and the like) and instead use a single JavaScript function to attach handlers when
the page is ready for display. By not using event attributes, you keep markup code and JavaScript
code separated.

What about the code that is referenced by event handlers? In other words, where would you get
the code for functions like handleClick?

embedded JavaScript code
You can embed JavaScript content in an HTML page in a number of ways. The simplest way to have
JavaScript code ready to use in an HTML page is placing it in the page within a SCRIPT element.

<script type="text/javascript">

 ...

</script>

As browsers encounter one of these <script> sections, they stop page rendering, execute the
script, and then proceed. If the script element doesn’t contain immediate code to execute (for
example, suppose it contains only function declarations), then the browser simply takes note of the
function and proceeds. A script element is therefore an acceptable place to embed the definition of
functions invoked by event handlers.

Embedding script code in a page has both pros and cons, but mostly cons. Table 4-3 summarizes both.

 CHAPTER 4 Making sense of JavaScript 91

TABLE 4-3 Pros and cons of embedding JavaScript code in HTML pages

Pro Con

The page has no dependencies and is self-contained.
As a developer, you don’t have to look in several
places to find out things specific to a page.

The page is larger and takes more time to download.

The script code cannot be used outside the page that
contains it.

Restructuring the code to minimize duplicated func-
tionalities is compromised by the fact that no code
reuse is possible outside the page.

Script code cannot be cached by browsers separately
from the page.

In addition, there’s another point to consider: with embedded code, any changes to the script are
immediately visible. You just save the file and refresh the browser. But when the script file is linked as
an external resource (more on this in a moment), then you need to play some tricks to ensure that
changes are immediately visible and not hidden by cached copies of the same file.

This aspect is certainly important, but it doesn’t affect released applications. It is an important
aspect, but only during the development phase.

External files
As an alternative to embedding code in a script element, you can use the same script element to link a
JavaScript file as an external resource. Here’s how to do it:

<script src="http://..." type="text/javascript" />

The pros of using externally linked JavaScript files are exactly opposite to the cons of using embed-
ded script. This is the way to go; or, at least, using externally linked files should always be the first
option you consider in general web development and in Windows 8 development.

jQuery and Windows 8
At present, most JavaScript development is done with the immensely popular jQuery library.
You can download the library from http://jquery.com.

Typical web developers use the jQuery library to unobtrusively bind handlers to events and to
detect page-level events, such as the event that indicates the page is ready for display. In addition,
web developers use jQuery to query for ad hoc subsets of page elements. With reference to the
previous chapter on CSS, you could say that jQuery offers a syntax that mimics the syntax of CSS
selectors. In reality though, jQuery selector syntax is even richer than CSS standards.

For developers who have a strong web background, the thought of writing HTML pages with-
out using jQuery (or other popular JavaScript libraries, such as, knockout.js) may be nonsense.

http://jquery.com

92 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

In Windows 8, using jQuery (and other libraries, other than the WinJs library) may sometimes
be problematic, depending on how you use the jQuery library.

The reason why jQuery can sometimes be problematic is the new security model that
 Microsoft has adopted for Windows 8 applications. According to this model, dynamic
 manipulation of the page structure done with data that is potentially unsafe (that is, coming
from untrusted sources) is prohibited.

If you are familiar with jQuery, you can use it as long as doing so doesn’t give you a hard
time. If you are not familiar with jQuery, then it is suggested that you avoid using it for
 Windows 8 applications. For most of the advanced jQuery features (such as plugins), you will
find native components in the WinJs library for Windows 8. To query elements in the hosting
HTML page, you can use HTML standard functions—such as document.querySelector—that
supports a CSS-like syntax to select elements.

practices and habits
JavaScript code is easy to make work, but definitely hard to manage and evolve, unless you set up
and adhere to a number of practices. This sole purpose of this section is to summarize the do’s and
don’ts of plain JavaScript programming. “Plain” JavaScript programming means JavaScript techniques
not specifically targeted to Windows 8 development. You’ll switch to focusing on specific aspects of
Windows 8 JavaScript development in the next chapter.

Group your globals
In this chapter, you learned about the need to make your global data stand out. You can achieve this
by using the following code at the top of every JavaScript file you happen to use.

var Globals = (function() { return this; }());

Suppose you have a global variable that represents the name of the application; for example, this
variable is named AppName. The purpose of the previous suggestion was so that you can use the
variable as shown below:

Globals.AppName = "MyApp";

It should be noted that AppName and Globals.AppName would point to the same location, and
both can be used in the application with the same meaning. Of course, if you consistently use the
 version with the Globals prefix, you make your global variables stand out in code.

This approach is not free of issues. In particular, it still creates as many entries in the global
namespace as there are variables associated with Globals. Here’s a slightly better approach: first, you
place the following code at the top of each and every JavaScript file you define.

Globals = Globals || {};

 CHAPTER 4 Making sense of JavaScript 93

Next up, you define your global members as members of the newly created Globals object. The
difference is that now Globals is a brand new global object, and all the members you want to use
as global in your application are actually defined as children of Globals and are not polluting the
 JavaScript namespace. Put another way, all your application’s global variables are grouped under a
single global object that is visible to the JavaScript interpreter.

Keep application state at hand
All applications need to maintain their own state, that way the state can be persisted to disk when the
application is closed or, when used on a mobile device, the application is sent to the background.

A good approach is to have some code ready to load the application’s state upon application
startup. Data can be loaded from a storage location (if available), downloaded from some remote
location, or simply initialized to default values. When the application exits, the current state should be
persisted to storage to be ready for next use.

For this pattern to work smoothly, it is necessary that you start by defining a JavaScript object
whose properties represent the state of the application. Here’s an example:

var MyAppState = function () {

 var that = {};

 that.init = function () {

 // Take care of initialization and default values

 };

 that.load = function () {

 // Take care of loading from storage

 };

 that.save = function () {

 // Take care of storage

 };

 // Other properties here

 ...

 that.init();

 return that;

}

To attach an instance of this object to the Globals container, you write code as follows:

Globals.Current = new MyAppState();

From now on, you can read and write the state of your application via highly readable statements
such as Globals.Current.Xxx, where Xxx is the name of a property or member defined on MyAppState.

94 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Be ready for localization
Having the application ready for international markets may be a key to your success (or it might be
just for your own enjoyment if you’re approaching Windows 8 development with a light spirit).
In general, localization is an important factor for applications published to a public store, as is the
case with Windows 8 applications.

In JavaScript code for web applications, you don’t get a lot of built-in help with localization issues.
Thankfully, in Windows 8 development, you get significant support from the WinJs library. At the end
of the day, all you need to do is mark any elements whose content you want localized with a special
attribute. Next, you need only add a localized resource file to the application for each language you
intend to support.

The Windows 8 runtime will take care of automatically selecting the right content from the right
resource file according to the currently set locale.

Note If you are at all familiar with C# and general Windows development, this overall
 pattern should be nothing new. It’s precisely the old good pattern of Windows localization,
just adapted to the new Windows 8 API.

Summary

This chapter offered a quick tour of the JavaScript language and discussed taking an approach
unbiased by Windows 8 or web slants (to the extent that’s possible). You reviewed the basics of the
language and outlined a few common-sense patterns for effective development.

Quite honestly, this chapter, as well as the preceding two chapters on HTML and CSS, can only
serve the purpose of refreshing or perhaps clarifying some existing knowledge of the subjects. HTML,
CSS, and JavaScript each deserve a book of their own to be fully explained and learned step by step.
In case you feel you need a more specific resource, seek out the following Microsoft Press books.

For rank beginners:

■■ Start Here!™ Learn HTML5 by Faithe Wempen (Microsoft Press, 2012)

■■ Start Here!™ Learn JavaScript by Steve Suehring (Microsoft Press, 2012)

For those with some experience, or as a more in-depth follow-up to the previous books:

■■ HTML5 Step by Step by Faithe Wempen (Microsoft Press, 2011)

■■ JavaScript Step by Step by Steve Suehring (Microsoft Press, 2013)

It is key to note that this chapter covered mostly plain JavaScript. And JavaScript is, for the most
part, a language used in HTML pages. And HTML pages are essentially web-based resources.

 CHAPTER 4 Making sense of JavaScript 95

Starting with the next chapter, that all changes. You’ll see that coding Windows 8 with JavaScript
is inherently a somewhat different experience than coding JavaScript for the web. A Windows 8
 application is primarily an application written against the Windows 8 API. JavaScript is just the means
by which you express logic and orchestrate calls to the underlying API.

In this context, HTML and CSS are just UI languages through which you design and express the
user interface. More than HTML5 elements and custom CSS, you’ll be focusing on Windows 8 HTML
attributes and style sheets. Everything you have learned in these early chapters will turn out to be
helpful in later chapters. But there’s a lot more to learn about HTML, CSS, and JavaScript that hasn’t
been mentioned yet.

 97

Chapter 5

First steps with Windows 8
development

Success is counted sweetest by those who ne’er succeed.
—Emily Dickinson

In Chapter 1, “Using Visual Studio 2012 Express edition,” you had a first short glimpse of the
 Microsoft Windows 8 programming style. You created a simple application directly from one basic

template offered by Microsoft Visual Studio, then turned that into a slightly more functional and
significant application capable of displaying a random generated number on demand. As proverbial
wisdom reminds us, every journey—even the longest—begins with a small step.

To go beyond the basic level of getting and displaying a random number, you need to acquire
some command of HTML and CSS, and get the hang of the JavaScript language. The former will help
you imagine and create the graphical part of any applications you intend to try out. The latter will
help you organize the code to ward off unexpected results, so that you can translate your ideas into
instructions for the operating system more easily.

Now you’re ready to take the plunge into the Windows 8 Runtime (WinRT) environment. A
 runtime environment is the collection of Windows 8 programs and components that interact with any
 applications and make them run. Such an environment provides services and data to any applications,
but also requires that applications comply with some rules and constraints.

This chapter has three main objectives:

■■ Exploring the Windows 8 runtime environment

■■ Reviewing graphics requirements for Windows 8 applications

■■ Understanding the basic stages of the lifecycle of any Windows 8 application.

To meet these objectives, you’ll build another sample application that employs a fundamental
service of the runtime environment—the data binding service. The data binding service offers an easy

http://www.quotationspage.com/quote/27616.html

98 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

way to display data to the users of your application. You’ll be using the data binding service quite
often in the upcoming chapters.

The Windows 8 Runtime (WinRT)

It’s fairly rare for a new version of an operating system to introduce a new type of application that
is completely incompatible with older versions of the same system. Sometimes a newer operating
system offers a few new functions that tease companies to update existing programs. However, in
Windows 8, there’s a completely new segment of applications, named Windows Store apps. Not only
do these applications run only on Windows 8, but they also have a brand new look and feel, can
be offered for free or for sale through the Windows Store, and last, but certainly not least, are not
limited to classic personal computers but instead can also run—unchanged—on a variety of Windows
8-compliant devices, most notably Microsoft Surface devices. In addition, Windows Store applications
can only be developed on machines running Windows 8.

Note Just to cool down some possibly premature enthusiasm: no, there’s no way for you
to run your handmade Windows 8 application on an iPad. Any Windows 8 application can
run on devices as long the device is compatible with Windows hardware and software
 requirements.

Windows Store apps and other apps
Windows 8 has two working modes that you can switch on and off—the standard Windows mode
and the new Windows 8 mode. When configured for the standard Windows mode, your machine
looks not so different from an old-faithful Windows 7 machine. In this mode, you can seamlessly run
all of your existing Windows applications, since backward compatibility is fully guaranteed. As a user,
in the end, you won’t really experience a huge difference.

When a machine equipped with Windows 8 starts up, however, it is configured to operate in the
new Windows 8 mode. This brings up a brand new dazzling user interface and makes available a
different set of applications. In this mode, you won’t find any of your old applications; however, all of
your handmade, new Windows Store apps will be listed here (see Figure 5-1, for example).

Note Here’s another way of looking at the two souls of Windows 8: You can consider the
classic Windows desktop interface as just another application available in Windows 8 mode,
except that this built-in application will offer you a view of your machine with the eyes of
the Windows 7 operating system.

 CHAPTER 5 First steps with Windows 8 development 99

FIGURE 5-1 From Windows 8 back to the classic Windows user interface.

Fate of old-fashioned Windows applications
Windows applications that previously ran on Windows 7 can only be run in standard Windows
mode for Windows 8. To have them available in the default Windows 8 user interface, they must be
 rewritten as Windows Store apps. For example, you can’t use any of the Microsoft Office applications
without getting and installing a Windows Store version of Microsoft Office. Similarly for browsers,
both flavors of Windows 8 have their own version of Microsoft Internet Explorer.

In the end, Windows 8 doesn’t break compatibility with the millions of applications available out
there. It simply makes it clear that the future of the Windows platform goes in another direction.

Supported programming languages
You can write Windows Store applications in three main ways. You can use HTML and JavaScript, as
you’ll see in this book. In addition, you can write applications using the C# or Visual Basic programming
language and the XAML markup language to specify the user interface. Finally, you can use the C++
 language with XAML as the markup language to express the user interface.

All approaches deliver the same programming power. You can build the same application regardless of
the language and markup you choose. For a number of reasons, JavaScript and HTML form the approach
that makes it easier (but equally effective) for most developers, and especially for beginners.

Note The fact that any supported programming language for the Windows 8 platform can
be used to build any type of application is not a secondary point, and it stems from the
overall architecture of the Windows 8 platform.

100 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

An overview of the WinrT ApI
With Windows 8, Microsoft makes an important move. This move is ultimately the reason for the
two souls of Windows 8 and the need to distinguish between Windows Store applications and all
other applications. Microsoft Windows 8 replaces the underlying layer through which the core of the
 operating system functions and is exposed to user applications.

The new infrastructure that backs up Windows Store applications is known as the Windows Runtime.

The Windows 8 stack
In Figure 5-2, you see the Windows 8 Runtime stack at a glance. The diagram shows how two parallel
stacks can live side by side to support two different application development models—one centered
on JavaScript and HTML and one on XAML and C# or Visual Basic. Notably, for clarity reasons the
figure omits the third stack we mentioned earlier that is centered on C++ and XAML.

It is key to notice that both stacks rely upon the services of the WinRT application programming
interface (API) which, in turn, is serviced by the operating system kernel. The kernel of an operating
system is the core engine that provides basic functionality. To use a car analogy, if the WinRT API is
the engine, then the kernel can be assimilated to the collection of essential components the engine is
made of.

FIGURE 5-2 The Windows 8 stack.

The gray boxes indicate which parts of the stack are interesting for the scope of this book. You’ll
use HTML (and possibly CSS) to style the user interface and JavaScript to make it behave the way you
like. Your interaction with the underlying operating system will actually be mediated by the WinJS

 CHAPTER 5 First steps with Windows 8 development 101

library. Any Windows 8 application written with JavaScript will include the WinJS library and use its
API to access functions such as storage, networking, graphics, and more.

Any code you write is compiled by the Windows 8 JavaScript engine and then run. Access to the
WinRT subsystem occurs dynamically as the user interacts with the application. As you can see from
Figure 5-2, WinRT supports all stacks: that’s why there’s nearly no functional difference between what
applications written with JavaScript and C# can do.

Capabilities of the WinrT ApI
Figure 5-3 expands the black box labeled with the WinRT API name that you saw in Figure 5-2. Also,
Figure 5-3 lists the classes of functions available to Windows 8 programmers.

To use a particular class of functions—for example to set up a network connection and download
some RSS data from a remote URL—you just reference the appropriate JavaScript file in your
 application and start using the related functions.

The DirectX block refers to the underlying API that backs up advanced graphic capabilities of
 upper layers in the Windows 8 stack. Media and presentation blocks provide the infrastructure for
image processing and manipulation, and multimedia and visual elements. Networking refers to the
communication layer—most notably HTTP connections. Finally, storage is about the reading and
 writing of files and data, and the Devices block indicates the set of functions to control sensors and
locally connected devices, such as printers.

FIGURE 5-3 Class of functionality available in WinRT.

In the upcoming chapters, you’ll take a tour of the various classes of functions and see how to take
advantage of them in sample applications.

Aspects of the WinrT ApI
Any code that you write on top of the WinRT API using any of the supported development stacks
(that is, HTML+JavaScript) will have some common aspects. These common aspects descend from the
design and implementation of the underlying WinRT API and strongly characterize function calls you
make through WinJS—your gateway to the low-level WinRT API.

For example, any functions expected to perform for longer than just a bunch of milliseconds have
been designed to be asynchronous. This is a huge change for developers with some experience in

102 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Windows development. An asynchronous function is a function that begins execution when invoked
but has no well-defined timeline for termination.

In other words, an asynchronous function right after launch proceeds in parallel with any
 subsequent code. So a developer who needs to execute some code with the results of the
 asynchronous operation now has the problem of where to place this code. The shift towards
 asynchronous programming, however, is significantly mitigated by some new facilities available at
the language level. In the end, all that you, as a beginning Windows 8 developer, need to learn is
how to make a function call and how to grab its results. For former .NET developers, though, the
 asynchronous nature of the WinRT API might be an issue.

Another area of the WinRT API that deserves some early thoughts is storage and file access.
In Windows Store applications, direct file access is restricted in the name of security. That doesn’t
mean, however, that you cannot permanently store data in a Windows Store application. More simply,
the storage API that WinRT makes available doesn’t give developers full control over the disk—as it
is always the case for classic Windows applications. To open and save documents and files, you also
have new file picker components that replace the standard common dialogs of Windows.

Note Developers of Windows Store applications find an overall programming framework
(for example, WinJS for those who chose the HTML+ JavaScript stack) that looks a lot like
the popular .NET Framework, but still has some key differences. These differences are
clear signs of the overall commitment made by Microsoft to rework and reimagine the
 programming framework that Windows 8 developers deal with. As a result, some of the
classes in the WinJS library are functionally identical to .NET Framework classes; some
have only minor differences. Some other classes, instead, have a counterpart and some are
just unavailable. Finally, some new classes make their debut and, overall, they contribute
to making the developer’s arsenal powerful enough to build effective and functional
 applications.

The Windows Store app user interface

Far beyond functionality, what really identifies an application as a Windows Store application
is its user interface and the resulting user experience. The new user interface of Windows Store
 applications is known as the Windows 8 UI. This new revolutionary user interface results from the
combination of features specific to the Windows 8 operating system with some innovative design
principles. Let’s find out more.

Aspects of the Windows 8 UI
If you stop at appearances, then the Windows 8 UI guidelines are just for new Windows Store
 applications and can’t be adapted to Windows 7, web, and mobile apps to new Windows applications,
even if developed and run specifically for Windows 8.

 CHAPTER 5 First steps with Windows 8 development 103

If you take a second, deeper look at the Windows 8 UI initiative, you can’t help but recognize a
bunch of universal design principles that describe concisely and precisely the vision behind software
applications of the next years. You can conclude that there’s substance behind the new look and feel.

The Windows 8 UI at a glance
Here’s a quick list of aspects that strongly characterize the user interface of a Windows Store
 application. First and foremost, a Windows Store application is touch-enabled, but it is not limited to
touch as the sole source of input. Support for touch is an aspect that enables the application to work
smoothly on a tablet but also on a regular laptop or on a desktop computer equipped with a touch
screen.

Second, a Windows Store application displays in a single, plain borderless window devoid of any
adornment such as resizable borders, caption bar, and icons. This is definitely a breaking change
with any previous version of Windows. At the same time, a Windows Store application adapts to the
effective size and shape of the screen and can offer a fluid rendering experience. The content adapts
intelligently to whatever layout the physical screen may have.

Finally, a Windows Store application integrates smoothly with the surrounding environment and
will leverage new facilities, such as the App bar, Live tiles (a smart replacement for old-fashioned
desktop icons), and the Charms bar (quick buttons to interact with other apps through well-known
contracts). A Live tile, in particular, is a square block displayed in the Start screen of Windows 8 that
references an installed application. What makes a tile “live” is the ability to display a little animation
and content based on the data the application holds or the current state. Figure 5-4 displays the
Charms bar; Figure 5-5 shows live tiles; and Figure 5-6 illustrates the App bar.

FIGURE 5-4 The Windows 8 Charms bar.

104 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 5-5 Examples of Windows 8 Live tiles.

FIGURE 5-6 The App bar of a Windows Store application.

Device-centric design
A Windows Store application presents itself fused to the design of the operating system and fully
 immersed in the surrounding environment. You can legitimately think that the design principles
 applied are then specific of the Windows 8 platform. It is instead a set of principles that, while
 developed to be applied to Windows 8 applications, are general enough to become source of
 inspiration for any software and platform that needs be device-centric.

Device-centric is a relatively new term that essentially revolves around the idea that design and
functionality of an application should be based on the assumption that the application will run on a
variety of different devices—different for screen size, memory capabilities, and programming power.

Inspiring principles of the Windows 8 UI
The Windows 8 UI is inspired by the following seven principles:

■■ Design for touch and intuitive interaction.

■■ Be responsive to user interaction and always ready for the next interaction.

■■ Reduce redundancy in your user interface.

■■ Fit into the existing UI model.

 CHAPTER 5 First steps with Windows 8 development 105

■■ Don’t reinvent the wheel.

■■ Collaborate with other applications via contracts.

■■ Be aware of the clouds.

Extensive application of these principles can really make any applications—and not just upcoming
Windows Store applications—much more virtuous and attractive.

Note To understand why Windows 8 UI design principles are important, just consider
that for too many years users of software applications have been forced to think and act
 following the rules of the application design. Regardless of best intentions, software did not
take care of end users often enough. This is going to change, though; youngsters are going
to be a much less forgiving generation of users than the current one. Be prepared to design
applications that are fluid in the design—both graphical design and logical design. That’s
probably the only software that makes sense shortly. Thanks to the native user interface,
Windows 8 is probably really making this easy.

So the question becomes: How would you turn these guidelines into concrete action?

Design for touch
Touch is what makes an application immediate to use, and it is the primary factor that sets the success
of smartphones and tablets. Touch is, however, also a divider. If you invest in a user interface that’s
touch-based, then your software may not be able to run as smoothly on a non-touch device. So it is
key that you never consider touch as the only source of input.

This means, for example, offering the mouse or keyboard to classic users and a touch screen to
younger (or just more immediate) users. In this way, users may, say, pinch and stretch to zoom on
some content on tablets and just click (or perhaps double-click) to get the same effect on laptops.

Be responsive and ready
Touch has been a quantum leap for user experience. It has had the side effect of making another
aspect of user experience even more important—responsiveness. As the user taps and “touches”
visual elements, she expects them to react quickly, such as other objects in the real world. Try lightly
tapping an object on the edge of the table; if the touch was perceived and detected, well, the object
falls down immediately: it doesn’t display an hourglass and then fall down a few seconds later.

Beyond touch and responsiveness, intuitiveness of the interaction is also critical. A goal of the
 application should be making it clear for users at any stage what the next operations are. This
 apparently basic point has nontrivial implications on design of the user interface and organization of
the data and logic.

106 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Zero redundancy
For many years, redundancy in the user interface of an application has been considered a good thing.
You define a user interface as redundant if it allows performing the same task in more than one way.
Keyboard and mouse navigation, slightly different menu items (such as, Save, Save All, Save As), and
keyboard shortcuts all produce the same result in many applications you may use currently.

In a user interface that is essentially touch-based, all these methods have no reason to exist.
 Subsequently, the zero redundancy policy is a great virtue of Windows Store applications.

This is a design consideration that also emerges quite clearly in many successful mobile
 applications and is tightly connected to a growing need for simplicity and effectiveness—like being
able to do more things (or just the same things) with less options and less tools.

Do as romans do
Another pillar of software development of the past that the Windows 8 UI brings into question is
the overall user interface model. For various reasons, some applications made a point of providing a
custom user interface. Sometimes this has happened to make the application shine in comparison to
other applications of the same type. Sometimes, instead, it came as the result of trying to make the
application in some way more usable and enjoyable.

Any application in Windows 8 should take its own space in the context of the user interface
model dictated by the platform. For this reason, the fourth principle of Windows 8 applications can
be summarized with the old proverb that suggests doing as Romans do, at least when you’re in
Rome. Also, this principle is nothing new to anybody with a bit of experience in mobile application
 development.

Especially in iOS and Windows Phone markets, applications may be rejected if they provide a user
interface that clashes with guidelines. You take the same risk with Windows Store apps.

Do as romans do (and don’t reinvent the wheel)
The fifth principle of Windows Store applications is a tricky corollary of the fourth. It just strengthens
the importance of giving applications a user interface that fits well with the system’s user interface.
Not only do you want to make apps consistent with the system, but you also want to achieve that by
using tools and templates offered by the Windows 8 stack of choice.

For this reason, you’ll be using extensively the aforementioned WinJS library in the upcoming
chapters. WinJS is the repository of the native tools for building Windows Store applications with
HTML and JavaScript. You’ll find an introduction to the library in the next section.

Collaborate (and don’t reinvent the wheel)
Full integration with the host platform is a winning point of any Windows Store application, as it
allows users to feel at home with just about any application. Furthermore, it also enables distinct
 applications to interact and exchange data.

 CHAPTER 5 First steps with Windows 8 development 107

The sixth principle can then be summarized by saying that applications may rely on public services
exposed by other applications in order to implement their functionality. Windows Store applications may
import functions from other applications via contracts. A contract is a formalized API for applications to
invoke functions from other applications. This saves you from rewriting the same functions over and over,
and at the same time, it brings users to the same action in mostly the same way.

For example, Windows Store applications can support the system-defined Search contract to
 retrieve information from other applications and implement the Share contract to expose their
 content publicly.

Above us only cloud
Finally, the seventh principle probably needs no further explanation. Local disks are no longer and
not necessarily the only place to save and read data. To ensure a continuous feel between the user
and the application, for years developers used to save personal data to cookies and local settings.
The cloud just adds another dimension by publishing personal data and making that information
available to others for social software interaction. Here the cloud indicates user-specific or even
 application-specific storage that lives on some remote server that is publicly accessible.

Components for the presentation layer
The WinJS library is a library made of JavaScript objects expressly designed to provide easy access to
core Windows 8 features and subsequently simplify the development of Windows Store applications
with JavaScript.

WinJS consists of two main parts: a collection of behavioral objects to deal with core tasks such
as storage, networking, multimedia, and application lifecycle, and a set of widgets for user interface
arrangements. You’ll use both parts of the WinJS library in the rest of the book. Anyway, it is helpful
to have an overall vision of the visual widgets you can quickly incorporate in your applications as
building blocks.

Visual elements of WinJS
Table 5-1 provides a view of the visual elements you find in the WinJS library. You will compose
the user interface of your future Windows Store applications by integrating one or more of these
 components in an HTML template.

TABLE 5-1 WinJS widgets

Widget Description

AppBar Displays a horizontal command bar that is usually placed at the bottom of the window.

DatePicker Pops up a calendar and enables the user to pick up a date.

FlipView Displays a collection of items and allows a user to flip through them, displaying one at
a time. A typical example can be displaying pictures and captions with the ability to flip
through them horizontally.

108 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Widget Description

Flyout Displays a simple popup message that disappears only when the user touches (or clicks)
anywhere on the screen.

ListView Arranges a collection of items in a variety of layouts; for example, as a grid or as a list.

HtmlControl Displays any content provided in the HTML format.

Menu Displays a flyout that looks like a standard menu list.

PageControl An aggregate of HTML, JavaScript, and CSS that can be embedded as in a view or navigated
to as an external page. You use the PageControl element to define the aggregate.

SemanticZoom Enables the user to zoom between two different views of the same content. One
view is the zoomed-out representation of the content; the other instead provides the
 zoomed-in view.

TimePicker Enables the user to select a time in a graphically appealing way.

ToggleSwitch Displays a standard user interface for users to turn an item on or off.

Tooltip Displays a pop-up view that can incorporate rich content, such as images and formatted
text. The purpose of a tooltip is to provide additional but optional information over a
data element in the view.

ViewBox Elements displayed within a ViewBox automatically scale to fill the available space. The
ViewBox widget also reacts to changes in the size of the container, such as after a screen
rotation or a window resize.

These visual components cover a good number of common scenarios; you can expect to find more
readymade Windows Store visual components from third-party vendors, open-source projects, and
blog posts. As you get more and more familiar with Windows 8 development, you can even start
creating your own widgets. Having a widget to provide a given functionality just makes it far easier to
reuse it across multiple pages and applications.

Important You mostly write Windows Store applications using HTML and CSS to define
the user interface. Anything you can do with HTML and CSS is fine. Stock visual elements
listed in Table 5-1 just help you in making available useful components and in giving your
 applications an overall consistent look and feel.

On-demand user interface
It should be clear by now that Windows 8 provides a few standard ways for users to access features
in an application. There are static commands bound to fixed elements in the user interface (such as,
buttons) and dynamic commands that become available on demand.

By using the principle of on-demand UI, you aim at leaving the real estate of the application
as clean and tidy as possible and not at all overloaded with visual items. At the same time, items
 required to trigger commands and start operations show up on demand when the user seems to
need them. The App bar and the system’s Charms bar are the mechanisms provided by Windows 8
for on-demand UI. The App bar is a repository of an application’s commands that pops up as the user
moves towards the bottom of the screen. The Charms bar slides in from the right edge.

 CHAPTER 5 First steps with Windows 8 development 109

Charms provide a common way for users to get to the features of nearly every application;
for example, search, share, and access to files. The App bar, instead, contains application-specific
 commands and is expected to list commands that make sense for the current view only.

Creating a sample app bar
To get familiar with WinJS programming, here’s a quick taste of what it means to create an AppBar
in a Windows Store application. As first step, you need some HTML markup to host the AppBar. Most
WinJS visual components just take an HTML segment and transform it into something else. You can
create a new blank project and edit the default.html page to contain the following code:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>My AppBar</title>

 <!-- WinJS references -->

 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet" />

 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>

 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- MyAppBar references -->

 <link href="/css/default.css" rel="stylesheet" />

 <script src="/js/default.js"></script>

</head>

<body>

 <h1 id="header">

 Sample page using an app-bar.

 </h1>

 <hr />

 <div id="yourAppBar" data-win-control="WinJS.UI.AppBar" data-win-options="">

 <button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdAdd',label:'Add',icon:'add'}">

 </button>

 <button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdRemove',label:'Remove',icon:'remove'}">

 </button>

 <hr data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{type:'separator',section:'global'}" />

 <button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdDelete',label:'Delete',icon:'delete'}">

 </button>

 <button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdCamera',label:'Camera',icon:'camera'}">

 </button>

110 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 </div>

</body>

</html>

The body of the previous page includes a plain DIV and a few BUTTON elements. The magic that
transforms this markup into an AppBar in pure Windows 8 style is the data-win-control attribute.

Applied to the DIV tag, the attribute transforms it into a WinJS.UI.AppBar object—namely an
 AppBar. Likewise, applied to a BUTTON element it makes it a button on the AppBar or an object of
type WinJS.UI.AppBarCommand. The data-win-options attribute contains settings for control. For
example, an AppBar button is assigned a unique ID, a label, and an icon. To display an AppBar, you
either swipe up from the bottom of the screen or right-click the application’s screen. Finally, you can
achieve the same outcome by pressing the Windows button and Z.

What about some action to be performed when the user clicks a button?

The HTML for the layout you have just entered serves the purpose of defining the layout of the
bar. To add a behavior, you also need some JavaScript. You edit the default.js file in the project, as
shown below:

(function () {

 "use strict";

 WinJS.Binding.optimizeBindingReferences = true;

 var app = WinJS.Application;

 var activation = Windows.ApplicationModel.Activation;

 app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // Load application state if needed

 } else {

 // Restore application state here.

 }

 args.setPromise(WinJS.UI.processAll()

 .then(init()));

 }

 };

 app.oncheckpoint = function (args) {

 // This application is about to be suspended.

 };

 app.start();

})();

 CHAPTER 5 First steps with Windows 8 development 111

// Button functions

function doClickAdd() {

 var alertDialog = new Windows.UI.Popups.MessageDialog("Add button clicked!");

 alertDialog.showAsync();

}

function init() {

 var page = WinJS.UI.Pages.define("default.html", {

 ready: function (element, options) {

 document.getElementById("cmdAdd").addEventListener("click", doClickAdd,

false);

 }

 });

}

Expressed as an immediate function, the code defines a page and a few event handlers for it.
When the page is ready for user interaction, for example, the code associated with the ready event
runs. All it does is add a handler to the click event of each of the previously defined buttons. Let’s
examine, in detail, the code for the click event:

document.getElementById("cmdAdd").addEventListener("click", doClickAdd);

First, the code retrieves the HTML element in the page whose ID equals the string cmdAdd.
This HTML element is added as an event listener for the “click” event. An event listener is a piece of
 JavaScript code that is automatically run when the user triggers the specified event—for example,
clicks or taps the button. In this case, the click of the button labeled “Add” runs the doClickAdd
 function. In particular, the doClickAdd function displays a message, as shown in Figure 5-7.

FIGURE 5-7 The sample App bar in action.

112 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Note In its simplicity, this example is quite illustrative of the patterns you’ll be applying in
all of the remaining chapters. Each of the upcoming chapters, in fact, will provide a list of
exercises through which you will practice the various aspects of Windows 8 programming
using HTML and JavaScript.

Data binding
In Chapter 1, you built your first Windows 8 application and had it generate a random number.
At some point, once the number was generated, you had the problem of displaying the number
to the user. When it comes to this, a first option is using the WinJS logger through the WinJS.log
method, as shown earlier. The WinJS logger, however, is good for testing but not for real applications,
since it shows the output only within Visual Studio.

Another option is using a message box, namely a pop-up window that shows some text and needs
to be closed manually by the user by clicking one of the displayed buttons. Although sometimes
 effective, this approach is also much too obtrusive for the user. It is good for asking questions; rarely
for showing data. Most of the time, you just want the application to generate some output values and
silently display them through the existing user interface. In other words, you want data bound to the
existing user interface.

programmatic manipulation of the HTML page
A Windows Store application written with HTML and JavaScript is primarily an application that
 consists of webpages—just processed in a slightly different manner from what a classic browser
would do. Because of this, a Windows Store application can contain any JavaScript-related code that
would make sense to have on a webpage.

When a browser renders a webpage, it creates an in-memory representation of the content
so that each and every HTML element turns out to be a programmable object. The in-memory
 representation is known as the Document Object Model, or DOM for short.

You retrieve objects within an HTML page using the following line of code:

var element = document.getElementById("id-of-the-element");

The parameter passed to the method getElementById is the unique ID of the element to retrieve.
More complex query expressions can be arranged using the syntax for CSS selectors, as you learned
in Chapter 3, “Making sense of CSS.” In this case, the code to use looks like the one shown below:

// Query for multiple elements

var elements = document.querySelectorAll("your-css-expression");

// Query for just one element by stopping at first match

var element = document.querySelector("your-css-expression");

 CHAPTER 5 First steps with Windows 8 development 113

Once you have found the element to update, you can change its content by setting the innerHtml
property to any string that can optionally contain HTML markup. The code below retrieves an
 element named header and sets its content to the string “Hello,” which will be rendered as bold text.

var element = document.getElementById("header");

element.innerHtml = "Hello";

This pattern represents a programmatic way to update the user interface with calculated data. The
approach that is based on direct updates of the DOM is extremely fast, but works well only if you want
to update specific elements. Scenarios where you have multiple elements to display—for example, a
list—or multiple pieces of data to display on different elements are not served well by this approach.

Note By using the innerText property, instead of innerHtml, you just set the plain text of
the HTML element without touching any markup or style. In a way, using innerText is safer,
since with it you don’t take any risk of altering the existing graphical structure.

Declarative manipulation of the HTML page
The WinJS library also supports a declarative form of updating HTML elements, known as data
 binding. Let’s see how it works. Create a new blank Windows 8 project and edit the BODY of the
default.html page to make it look like the code below:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>DataBinding</title>

 <!-- WinJS references -->

 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet" />

 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>

 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- DataBinding references -->

 <link href="/css/default.css" rel="stylesheet" />

 <script src="/js/default.js"></script>

</head>

<body>

 <header>

 <h2>Start Here! Build Windows 8 Applications with HTML5 and

 JavaScript</h2>

 <hr />

 <p>Random number displayed via data-binding.</p>

 </header>

114 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 <div class="center">

 </div>

 <div class="center">

 <input id="numberButton" type="button" value="Get Number" />

 </div>

 <footer>

 <hr />

 Dino Esposito | Francesco Esposito

 </footer>

</body>

</html>

The SPAN element is decorated with the data-win-bind attribute. Properly interpreted by the
 Windows 8 runtime, this attribute does the magic of setting the content of the element via the
 innerText property. What is the generatedValue string you see in the code snippet then? The idea is
generating a random number and displaying it through the user interface.

Even though you can bind any kind of data to an HTML element, including single pieces of data
such as a string or a number, it is likely that you will need to do that for compound objects resulting
from a mix of text, numbers, and dates. Let’s then assume you have a JavaScript object to describe the
data to bind. Add the following script to the bottom of default.js file:

// Gets an object embedding a random number between 1 and 100

function displayGeneratedNumber() {

 var randomNumber = { generatedValue: Math.floor((Math.random()*100)+1) };

 // more code needed here

}

You now have a JavaScript object with a property name generatedValue that contains a random
generated number comprised between 1 and 100. In light of this, the following markup gets a bit
more significance:

The string generatedValue is an expression that refers to the value you intend to assign to the
 innerText property. But there’s one more aspect to clarify: How can the Windows 8 runtime know
about the object that exposes the generatedValue property? You need to get back to default.js and
rework the displayGeneratedNumber function a bit:

// Gets an object embedding a random number between 1 and 100

function displayGeneratedNumber() {

 CHAPTER 5 First steps with Windows 8 development 115

 var randomNumber = { generatedValue: Math.floor((Math.random()*100)+1) };

 // Enable binding on the HTML element of choice

 var bindableElement = document.getElementById("numberContainer");

 WinJS.Binding.processAll(bindableElement, randomNumber);

}

The two lines you added tell the Windows 8 runtime environment that the element named
 numberContainer—the SPAN element—should be processed and bound to any content it can get
from the object randomNumber. At this point, the markup below now has full significance:

The property innerText of the SPAN element named numberContainer will display the value
 assigned to the property generatedValue of bound object randomNumber. Is that all? Well, not yet.

The missing link is when the code written in default.js will actually run. For this, you need one more
edit to default.js. You edit the line that calls setPromise, as shown below:

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // Initialize your application here.

 document.addEventListener("DOMContentLoaded", displayGeneratedNumber);

 } else {

 // Restore application state here.

 }

 args.setPromise(WinJS.UI.processAll()

 .then(init()));

 }

};

Next, you also add a new custom function called init at the bottom of the default.js file.

function init() {

 document.getElementById("numberButton").addEventListener("click",

numberButtonClick);

}

Are there any lessons you can learn from this example?

First and foremost, data binding is a powerful mechanism that unfolds all of its power when you
really manage enough complexity. Using declarative data binding when you only need to display
one piece of data is probably overkill. In this case, direct use of innerHtml is preferable. When you
have a list of items or multiple pieces of a single data item, then declarative data binding is preferable

116 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 because all you do is manage your variegated data as an object, add an attribute to markup, and
adjust a few lines of code to trigger binding.

Important Windows 8 data binding is just one of the services you get out of the box with
the WinJS library. You are not forced to use the Windows 8 framework for data binding.
It is probably easiest if you have no knowledge of web development. However, if you are
already familiar with web development and libraries, such as Knockout (or some jQuery
plugins), then you can just import these libraries and do data binding through their
 infrastructure. In summary, any approach you may know for data binding works in WinJS.
If not, you can always use the excellent WinJS native data binding infrastructure.

Note In this chapter, you only scratched the surface of data binding and barely explored a
very basic scenario. In the upcoming chapters, you’ll learn how to bind complex objects and
a list of items to the user interface through the WinJS rich infrastructure.

Understanding the application’s lifecycle

Any application in Windows 8 is characterized by a sequence of events that signal start, load and
finish of the application. Knowing more about these events that collectively form the application’s
lifecycle is key, since it may lead to introducing optimizations in the code and producing a better
behavior, especially when your Windows 8 application runs on devices. A device, in fact, is hardly as
powerful as a laptop in terms of processing power, battery, and memory.

States of a Windows Store application
As Windows 8 is an operating system also devised to run on mobile devices, it can’t just ignore a
basic rule of mobile operating systems. On mobile devices, the user launches an application but
never terminates it. Once launched, the application is kind of owned by the operating system and its
 lifetime is managed by the operating system.

All Windows Store applications can be in one of the following four states: running, suspended,
 terminated, or just not running. Transitions between these states are determined by the user and
system activity, as illustrated in Figure 5-8.

 CHAPTER 5 First steps with Windows 8 development 117

FIGURE 5-8 States of a Windows Store application.

Launching an application
There are quite a few ways for the user to launch the application. The most common way is that
the user launches the application from a tile—the Windows 8 counterpart of an icon or shortcut.
 Another possibility for the application to be launched is when the user searches for some data that
the application has exposed or when the user shares data with the application. Both tasks are usually
accomplished through items in the Charms bar. Finally, yet another possibility is that the application
gets launched because the user opened a file associated with the application.

Starting an application always causes an activated event to be fired by WinJS that you can handle
through the aforementioned onactivated event:

app.onactivated = function (args) {

 ...

}

Most of the time, you need to do some work during the activated event. For example, you check
the application’s previous state and take appropriate actions. The following code is part of any
 WinJS-based application and provides a placeholder where you then add any initialization code you
may have. Upon launch, you typically load default data.

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // Initialize your application here.

 } else {

 ...

 }

 // Trigger data binding (if any) throughout the page

 args.setPromise(WinJS.UI.processAll());

 }

};

118 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

A short note is worth mentioning about the setPromise method you see in the code snippet. The
method informs the application that some asynchronous work is in progress. The method that hosts
setPromise can’t then be exited until the pending work is completed. However, processing continues
up to the end of the containing method. This creates the problem of how you can reliably decide
what to do once the pending work—also referred to as the promise—has terminated. The promise
object in WinJS has the then method that you use to specify any work to do upon completion of the
promise. Here’s an example:

args.setPromise(WinJS.UI.processAll()

 .then(function() { ... })

);

Another similar method also exists, named done. The difference between done and then is only
that then returns another promise object, whereas done doesn’t return any value.

args.setPromise(WinJS.UI.processAll()

 .then(function() { ... })

 .then(function() { ... })

 .done(function() { ... })

);

In summary, they do the same work but done can only be used at the end of a chain of actions.

Suspending an application
In Windows 8, only one application at a time can be active in the foreground. If the user switches to
a new application, then Windows 8 suspends the currently running application and moves it to the
background. The suspended application remains in memory even though its code doesn’t run. The
checkpoint event is fired to the application when it is about to be suspended. Here’s how you can
handle the event:

app.oncheckpoint = function (args) {

 // Save app data in case of termination.

 WinJS.Application.sessionState["location"] = ...;

};

During suspension you want to save any data that can help later to reconfigure a state of the
 application very closely, if not identical, to the state when the application was suspended. You use
the sessionState dictionary to save values. The sessionState dictionary has a list of named entries—for
example, location, and takes string values. The name of entries is arbitrary, but usually an indicator of
the role of the saved data.

The user can switch back to a suspended application at any time; when this happens Windows just
wakes up the application, which regains the foreground at the expense of the current application.

 CHAPTER 5 First steps with Windows 8 development 119

A suspended application is cached in memory for as long as it is possible, but it is not guaranteed
to stay in memory indefinitely. It may happen that, perhaps running short of memory, Windows
terminates suspended applications. In this case, the user can only restart the application from the tile
if she wants it back.

resuming an application
There’s a simple way for a developer to detect whether the application is being run from a tile or a
charm or if it is resumed from a suspended state. The activated event is fired and the ActivationKind
property is set to launch. In addition, if the previousExecutionState is set to terminated, then the
 application has been reactivated from suspension. When recovering from suspension, you might want
to retrieve and restore any saved state. The saved state is commonly retrieved from the sessionState
dictionary or from wherever it was stored during suspension. The code below shows where you insert
code during resumption.

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // Initialize your application here.

 } else {

 // Restore application state here.

 var data = WinJS.Application.sessionState["location"];

 ...

 }

 args.setPromise(WinJS.UI.processAll());

 }

};

Using the sessionState dictionary to save data is not mandatory. You can save session data to some
persistent store or you can just find it acceptable that the application restarts with a fresh state every
time. It is mostly up to you, but saving to session state is the most common approach.

Background tasks
In Windows 8, as well as in other mobile platforms, you can have background tasks to perform non-UI
related tasks, such as transfer of data.

A background task is a lightweight class that is associated with a given application and runs
 periodically while the application is not running. A background task can be linked to a condition and
will not run until the condition is met.

A background task is also able to display information on the Lock screen. The Lock screen of a
Windows 8 application contains a background image and some information is rendered over that
such as the current time, the network status, and battery power. In addition, a background task can
write some specific text to the lock screen just to provide a quick update about its status.

120 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Summary

This chapter ends the first part of the book, where you essentially built the base groundwork for
the rest of the book and for your journey toward Windows Store applications. Now you should be
familiar with HTML and CSS, and know enough of the JavaScript language to make sense of the WinJS
 specialized components you meet in the next chapters.

 121

Chapter 6

The user interface
of Windows Store
applications

 Be great in act, as you have been in thought.
—William Shakespeare

With this chapter, you enter a section of the book that focuses on concrete examples and
 exercises of Windows 8 programming. You’ll see how to use specific components and

 functions of Microsoft Windows 8, and also explore a few techniques for producing code that not
only “just works,” but is also easy to read and well structured. In this chapter, you’ll focus primarily
on presentation—the user interface—and related aspects, such as visual components, input forms,
 pop-up windows, and the overall layout of the pages.

Important Readability is an attribute of code that’s not just reserved for experts—it is,
 instead, an attitude that you can learn to adopt right at the beginning of your programming
career. Keeping all your code readable will help you immediately, as you’ll see the first time
you return to your code after a break of a few days or weeks.

Foundation of Windows Store applications

When you open up Microsoft Visual Studio with the intention of creating a new Windows Store
 application, you must first decide on the type of project you want to create. Visual Studio provides a
range of choices, called “templates.” Templates, among other things, provide a basic layout for your
application (see Figure 6-1).

http://www.quotationspage.com/quote/29567.html

122 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 6-1 Choosing the layout of a new application.

Choosing the project type is important, but it is not an essential step. The template basically serves
the purpose of giving you (for free) the skeleton of an application with the layout that you are looking
for. Most of the project choices come down to whether you want to build a single page or a multiple
page application.

For all the sample applications you’ve built so far, you have used the Blank App template. The
Blank App template just gives you an empty HTML page that you can fill up with whatever content
and behavior you like. In this regard, the Blank App is the most flexible approach. It doesn’t give you a
complex page layout, but it does give you a fully functioning project, ready to compile and run.

Defining the layout of the application
Nearly any Windows Store application requires users to navigate between pages. Sometimes, the
 application explicitly provides a navigation menu so users can find and return to a list of available
pages quickly. The Navigation App template that you see in Figure 6-1 addresses that scenario.

In other cases, an application doesn’t have a clearly visible navigation bar but still sets up a form of
navigation as the user clicks to expand an item from a list into a more detailed view. This is the type
of application skeleton you get if you opt to use the Split App or the Grid App template. In upcoming
chapters, you’ll work on examples using the Grid App template, but for now you’ll stick to the Blank
App project template.

examining the project structure
Open up Visual Studio and create a new Blank App project; name it TodoList. The main purpose of
the exercise is to create an input form to collect information about an activity to track. Figure 6-2
shows the entire content of the newly created project in Solution Explorer.

 CHAPTER 6 The user interface of Windows Store applications 123

FIGURE 6-2 The files that form the TodoList project.

The References folder contains the list of libraries required to compile the application. In this case,
the only library you need is the by-now-familiar WinJS library.

The Css folder contains the style sheets for styling the various HTML pages you use in your
 application. You can expect to have one CSS file per each page you add to the project.

The Images folder is the repository for all image files you need. This includes images you display to
the user that are part of the interface, as well as images required to integrate the application into the
Windows 8 and Windows Store environments. Table 6-1 explains what each of the .png image files in
Figure 6-2 are used for.

TABLE 6-1 Purpose of the images in the default project template

Image file Purpose

Logo.png This is the image that appears in the tile that is reserved for the application in the Start
screen. You can provide this image in either .png or .jpg format. The recommended
size is 150 x 150 pixels. Windows usually overlays the name of the application onto the
 image; so you might want to consider not including the application’s name in the image.

SmallLogo.png This is the image used to represent the application in search results. The format can be
either .png or .jpg, and the recommended size is 30 x 30 pixels.

SplashScreen.png This is the image displayed for a relatively short period of time while the application
loads after having been launched by the user. The format can be either .png or .jpg, and
the recommended size is 620 x 300 pixels.

StoreLogo.png This the image used to represent the application in the Windows Store. The format can
be either .png or .jpg, and the recommended size is 50 x 50 pixels.

You may wish to provide additional images as well, such as a WideLogo.png image, to provide a
larger logo file—up to 310 x 150 pixels. Finally, the BadgeLogo.png file is a small image (usually
33 x 33 pixels) displayed on the Lock screen of a Windows 8 device to identify pending notifications
from your application.

124 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The Js folder contains the JavaScript files that contain any logic required by the application. You
usually have one JavaScript file per HTML page in the project, but you may also have additional
 JavaScript files shared by multiple pages in the project.

The root folder of the project contains three files, as summarized in Table 6-2.

TABLE 6-2 Purpose of the files in the root folder of the project template

File Purpose

default.html This HTML page is expected to define the home screen of the application.

Package.appxmanifest This file contains all the information required to package your Windows Store
 application for distribution.

Xxx_TemporaryKey.pfx This file represents a temporary certificate automatically issued for testing the
 application on your development machine. The Xxx in the name is actually a placeholder
for the real name of the application. The certificate is used to sign any executable
 resulting from the project. When the application is complete, you will need to replace
this test certificate with a real one obtained from your Windows Store account. Getting a
real certificate is a required step for publishing your application to the public store.

These files form the bare minimum set of files you need in a Windows Store application. As you
build the application, you will typically create custom folders in the project and add more files of all
the types you’ll need: more HTML pages, more style sheets, more JavaScript files, and more images.

The next step of the exercise consists of making some changes to the basic user interface to obtain
a form for defining the items that will go in the to-do list.

examining standard style and script references
If you double-click the default.html file and open it for editing, you will notice the following markup:

<!— WinJS references —>

<link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet" />

<script src="//Microsoft.WinJS.1.0/js/base.js"></script>

<script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

As the comment at the top seems to suggest, these are not usual references to external resources
you find in nearly any HTML page. These are special references to style sheet and script files natively
embedded in the WinJS library. You will not have any of those files available as source code in your
project; yet these files are extracted at run time from the resources of the WinJS library.

It should be noted that you can give your Windows Store application an overall light theme by
simply replacing the link element in the code above with the following:

<link href="//Microsoft.WinJS.1.0/css/ui-light.css" rel="stylesheet" />

Any additional CSS or script file you want to reference will go under the next section.

<!— TodoList references —>

 CHAPTER 6 The user interface of Windows Store applications 125

<link href="/css/default.css" rel="stylesheet" />

<script src="/js/default.js"></script>

In this case, /css and /js refer to the physical folders in your current project.

Adding fixed user interface blocks
The sample application you get from the Blank App template has a dark background and simply
 displays some placeholder text. You might want to customize your application in a number of ways—
for example, by adding a header and footer bar. Here are the header and footer that you used in
previous examples:

<header>

 Start Here! Build Windows 8 Applications with HTML5 and

JavaScript

 <hr />

</header>

<footer>

 <hr />

 Dino Esposito | Francesco Esposito

</footer>

As an exercise, let’s make these components reusable so that you can save them in a page and
reference the page wherever needed without worrying about the internal details.

The first step consists of creating a new custom folder in the project. You right-click the project
node (named TodoList) and from the subsequent menu select the Add | New Folder option. Name the
new folder Pages.

Note When creating a new folder, if you accidentally miss editing the folder name, then
you likely find a new folder in the project named “New Folder.” No worries; you just click
it for a while (sort of a long click where you hold the mouse button down for about a
 second). That will switch the project item into edit mode again, at which point just type
Pages, and click outside the text box to save your change.

To add a reusable block of HTML, you now right-click the Pages node in the Visual Studio Solution
Explorer and select Add | New Item from the context menu. From the window shown in Figure 6-3,
you then select HTML Page and name it header.html. Next, repeat the steps and create a second
HTML Page named footer.html.

126 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 6-3 Adding a new HTML Page component.

Both newly added HTML files have the same content, as shown below:

<!DOCTYPE html>

<html>

 <head>

 <title></title>

 </head>

 <body>

 </body>

</html>

Edit the content of header.html, as shown below:

<!DOCTYPE html>

<html>

 <head>

 <title></title>

 </head>

 <body>

 <header>

 Start Here! Build Windows 8 Applications with HTML5 and

 JavaScript

 <hr />

 </header>

 </body>

</html>

 CHAPTER 6 The user interface of Windows Store applications 127

Then edit the content of footer.html, as shown below:

<!DOCTYPE html>

<html>

 <head>

 <title></title>

 </head>

 <body>

 <footer>

 <hr />

 Dino Esposito | Francesco Esposito

 </footer>

</body>

</html>

Save your changes.

The next step consists of referencing your new header and footer elements from the main page—
default.html. So open default.html for editing and modify the BODY tag, as shown below:

<body>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/header.html'}"></div>

 <h1>TO-DO List</h1>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/footer.html'}"></div>

</body>

The data-win-control attribute transforms the DIV into an HTML control that simply shows the
content of the referenced file, namely header.html. The same happens for footer.html.

Back in Chapter 1, “Using Visual Studio 2012 Express edition,” you added a bit of color and style to
default.css; do the same here, and edit the default.css file, as shown below:

body {

 background-color: #1649AD;

 padding: 10px;

}

header {

 font-size: x-large;

 color: #ffffff;

 padding-bottom: 50px;

}

footer {

 padding-top: 50px;

 font-size: large;

 color: #eeee00;

128 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 font-weight: bold;

}

The default.css file contains the style information for the default.html page. If you want to reuse
the same style settings in another page—for example, mypage.html—then you could copy default.css
settings to a new file called mypage.css. That works, but there should be a better way of achieving the
same results (and there is).

As in Figure 6-4, right-click the Css project folder and select Add | New Item. From the next
window, select the Style Sheet item and name it after the project—in this case, name it todolist.css.
Copy the content of the body, header, and footer CSS classes to your new todolist.css file.

FIGURE 6-4 Adding a custom CSS file.

At this point, you have a global CSS file where you plan to store all global style sheet settings; in
addition, you have a page-specific CSS file where you need only those CSS styles that affect elements
in that specific page. To make the global CSS file visible to any page, you need to add an extra line in
all the pages that represent an application screen. So far, you just need to do that for default.html.

<!— TodoList references —>

<link href="/css/todolist.css" rel="stylesheet" />

<link href="/css/default.css" rel="stylesheet" />

You can run the application now and it should look similar to Figure 6-5. Admittedly, this is still a
fairly scanty application, but at least you have learned a couple of very useful techniques for reusing
markup and style.

 CHAPTER 6 The user interface of Windows Store applications 129

FIGURE 6-5 The current stage of the TodoList application.

Application attributes
Before adding some interaction to the sample application, you need to dedicate a few moments to
some configuration steps that are simple but required for any Windows Store applications—review
your manifest, logos, and splash screen.

The manifest file
Visual Studio creates an application manifest file automatically when you create a new Windows Store
project. The file contains the application’s name and description, logos, and other basic information—
such as the start page of the application. The manifest file is initially set to some default values that
you might want to change at some point. Visual Studio provides a convenient editor so you can
make the required changes easily. Figure 6-6 shows the editor; to enable it, you just double-click the
 package.appxmanifest file in the project folder.

The attributes you can specify are grouped by functional areas. For now, focus on the Application
UI tab. The display name is the official name of the application as it will be displayed in the store
and within Windows 8 menus—for example, the Start screen. The start page is set to default.html
by default; to change it you just create a new page or rename the existing page and then edit the
 manifest accordingly. Along with the default language and description, you can also select which
rotations are supported (for when the application is running on a tablet) and logo images.

In addition, the manifest file contains some technical information about the application’s
 requirements, such as whether it needs to access local storage or a webcam. You manage these
 additional settings via the other tabs you can see in Figure 6-6, such as Capabilities, Declarations, and
so on. You’ll visit these more advanced aspects in later chapters as you build development features
that require specific manifest settings.

130 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 6-6 The editor of the manifest file.

Adding logo images
Any Windows Store application needs a set of images that are used in various scenarios to quickly and
easily identify the application. At the very minimum, a Windows 8 application needs the four images
discussed earlier in this chapter and summarized in Table 6-1. Some recommendations apply, though,
when it comes to creating these images.

First and foremost, a Windows 8 logo has a transparent background. It means that the actual logo
consists of a drawing placed on a rectangular area. The background area is made transparent by
using ad hoc graphical tools such as Paint.NET. Paint.NET is a free photo editing tool you can get at
http://www.getpaint.net. Figure 6-7 shows the logo of the sample TodoList application placed on a
 transparent background.

http://www.getpaint.net

 CHAPTER 6 The user interface of Windows Store applications 131

FIGURE 6-7 Adding a transparent background to the logo image.

The checkered texture you see in the figure is the Paint.NET way of telling you that your image has
a transparent background. Giving logo files a transparent background is not mandatory, but it helps
keep your logo images more consistent with the overall user interface of Windows 8 (and anyway,
makes them look nicer).

Another little trick you might want to apply to logo images to make them more similar to some
Windows 8 native applications consists of flattening the drawing and reducing it to a single color—
white. In the end, the logo will be white on a transparent background. It doesn’t look that great when
you edit the image; but it definitely looks better when you install the application in the Windows 8
environment. Figure 6-8 shows the TodoList application installed with a white-transparent logo.

FIGURE 6-8 The TodoList logo in white on a transparent background. Windows 8 adds the name of the
 application automatically.

The final point to consider regards the background color of the application’s tile in the Windows 8
Start screen. As mentioned, the image comes with a transparent background but you can configure
the color of the tile. You do that by entering colors in HTML format in the manifest file. If you scroll

132 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

down a bit in the window shown in Figure 6-6, you will find a Background input field. As you learned
in Chapter 2, “Making sense of HTML5,” HTML colors are expressed in the format #rrggbb where rr,
gg, and bb indicate the hexadecimal values of the red, green, and blue color components. To get a
nice light blue color, enter #2eccfa.

Adding a splash screen
Every Windows Store application should have a splash screen. A splash screen is an image that
 displays right after the user launches the application and remains visible until the application is ready
for interaction. Any Visual Studio project template offers a free splash screen that developers have
only to edit with a graphical tool such as Paint.NET. Figure 6-9 shows a reworked splash screen for the
TodoList app.

FIGURE 6-9 The splash screen of the TodoList sample application.

There are a few guidelines to keep in mind that apply to splash screens. To begin with, the only
purpose of a splash screen is giving users immediate feedback about the application. Windows 8
guidelines recommend that you provide extremely simple images that basically consist of the
 application’s logo placed at the center of the logo surface—620 x 300 pixels.

Ideally, the logo has a transparent background and uses colors that blend well with the selected
background color for the splash screen. You can set the selected background color for the splash
screen in the manifest editor. You should also avoid showing advertisements and versioning
 information in the splash screen.

Getting serious with the TodoList application

The next step in the process of building the TodoList application consists of adding an interactive
form for the user to enter information about and keep track of a task. In doing so, you’ll get familiar
with some of the input controls available in Windows 8, as well as some of the HTML5 elements you
encountered in Chapter 2.

 CHAPTER 6 The user interface of Windows Store applications 133

Building an interactive form
The input form is divided into four sections, each represented with a div element. Open the default.
html file in Visual Studio and make sure the body element contains the following markup:

<body>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/header.html'}"></div>

 <h1>TO-DO List</h1>

 <div class="form-container">

 <div class="form-section"> ... </div>

 <div class="form-section"> ... </div>

 <div class="form-section"> ... </div>

 <div class="form-section"> ... </div>

 </div>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/footer.html'}"></div>

</body>

The div block with a CSS class name of form-container is just the block of markup you’ll be writing
in the rest of the chapter. In the default.css file, add the following code to style the container div
 elements:

.form-container {

 border-radius: 10px;

 background-color: #99e;

 color: #eee;

 padding: 20px;

 margin: 5px;

 width: 600px;

}

.form-section {

 margin-top: 10px;

}

.block-element {

 display: inline-block;

 vertical-align: top;

}

In the topmost div, you place controls to capture the description of the task and the due date. The
second div indicates the priority of the task, and the third allows the user to set the task status. Finally,
the fourth div contains a button to save the task.

134 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Defining the task object
Most of the JavaScript code inserted in HTML pages deals with updating elements. Data binding is a
powerful technique to keep this necessary code to a bare minimum, assigning the burden of doing
most of the work to the underlying framework. For data binding to work seamlessly, you should
 create an object that closely matches the data you plan to read and write through the form. In this
case, you need a Task object. To create it, add a new JavaScript file to the Js folder of the project. You
may name it after the application—TodoList.js.

Before you get to edit the todolist.js file, a small change is required in the default.js file to take
control of the loading phase of the application. It’s the same change you made in the data binding
example discussed in the previous chapter. In general, this change is required in any Windows Store
application. You locate the app.onactivated function and just replace the line that calls into the
 setPromise method with the code below:

args.setPromise(WinJS.UI.processAll()

 .then(TodoList.init())

);

The effect of this code is yielding control to the function named TodoList.init after the activation
phase has completed.

Now, turn your attention to the newly created todolist.js file and add the following code to it:

var TodoList = TodoList || {};

TodoList.init = function () {

 TodoList.performInitialBinding()

}

TodoList.Priority = {

 VeryLow: 1,

 Low: 2,

 Normal: 3,

 High: 4,

 VeryHigh: 5

};

TodoList.firstOfNextMonth = function () {

 var d = new Date();

 d.setDate(d.getDate() + 31);

 var year = d.getFullYear();

 var month = d.getMonth();

 var day = 1;

 var newDate = new Date(year, month, day);

 return newDate;

}

 CHAPTER 6 The user interface of Windows Store applications 135

// Define the Task object

var Task = WinJS.Class.define(function () {

 var that = {};

 that.description = "This is my new task";

 that.dueDate = TodoList.firstOfNextMonth();

 that.priority = TodoList.Priority.Normal;

 that.status = "Not Started";

 that.percCompleted = 0;

 that.minPriority = TodoList.Priority.VeryLow;

 that.maxPriority = TodoList.Priority.VeryHigh;

 return that;

});

Now you have a global object named TodoList that contains all of the JavaScript functions and
objects being used by the application. In addition, you have a Task object with a few properties, such
as description, due date, priority, status, and percentage of work completed. The next step is editing
the user interface so that you can collect data for populating a new Task object. At the same time, you
might want to use an existing instance of the Task object to initialize the input fields.

Collecting text and dates
In the top-most div, you place a multiline text editor and a date picker. The multiline text editor
 requires the textarea HTML element. For the date picker, you have two options. You can use the
HTML input element or you can use a Windows 8 date picker component. Using the Windows 8 date
picker makes things far easier for the user. Here’s the markup you need to insert in the first div of class
 form-section:

<div class="form-section">

 <div class="block-element">

 <h3>DESCRIPTION</h3>

 <textarea id="taskSubject" required

 data-win-bind="innerText: description"></textarea>

 </div>

 <div class="block-element">

 <h3>DUE DATE</h3>

 <div class="block-element" id="taskDueDate"

 data-win-control="WinJS.UI.DatePicker" />

 </div>

</div>

Let’s ignore for a moment the data-win-bind attribute and the whole theme of data binding. Let’s
pay attention instead to the data-win-control attribute used on the div tag with an ID of taskDueDate.
The data-win-control transforms a plain div element into a Windows 8 date picker component. So
you see a plain div element in the markup, but you actually get a much more sophisticated tree of
 elements at run time.

136 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Setting the task priority
The task priority is expressed as a number that ranges from one (very low) to five (very high). You can
have users just type the number in a text box. This would simply require an input field. In Windows 8,
you can use one of new input types introduced by HTML5. The hosting environment will then
 automatically render that as a touch-enabled slider. The following markup is all you need. This markup
fills the second section of your input form.

<div class="form-section">

 <div class="block-element">

 <h3>PRIORITY (1=VERY LOW - 5=VERY HIGH)</h3>

 <input id="taskPriority" type="range"

 data-win-bind="value: priority; min: minPriority; max: maxPriority"

 </div>

</div>

The type attribute on the input element set to the range string does the magic of giving your users
a nice slider. The initial value of the slider, as well as its minimum and maximum values, is set via data
binding. You’ll see more on data binding in a moment.

Setting the task status
The third section of the form contains information about the current status of the task. The status is
expressed with a string picked up from a drop-down list. In addition, you can indicate the percentage
of work already done in a numeric input field. Here’s the markup you need:

<div class="form-section">

 <div class="block-element">

 <h3>STATUS</h3>

 <select id="taskStatus">

 <option>Not Started</option>

 <option>In progress</option>

 <option>Completed</option>

 </select>

 </div>

 <div class="block-element">

 <h3>% COMPLETED</h3>

 <input id="taskPercCompleted" type="number" min="0" max="100"

 data-win-bind="value: percCompleted" />

 </div>

</div>

Windows 8 doesn’t offer any special facilities for a drop-down list. The plain select HTML element
works just fine. By setting the type attribute of the input element to number, you force the input
box to only accept numbers. Note, though, that Windows 8 still allows you to type non-numeric
 characters—except that they are discarded when the actual value is read back for further processing.

 CHAPTER 6 The user interface of Windows Store applications 137

Adding a button and tooltips
The final section of the form contains a button through which the user collects all the entered data
and triggers an operation that physically persists that data somewhere. You won’t do anything to
save the data in this exercise, but you’ll see how to collect data and summarize it for the user. The
 following markup from the fourth section contains two interesting things: a push button and a
tooltip. (A tooltip is a small pop-up window shown when the mouse hovers over a control with the
purpose of displaying useful information to the user.)

<div class="form-section">

 <div>

 <button id="buttonAddTask"

 data-win-control="WinJS.UI.Tooltip"

 data-win-options="{innerHTML: 'Purpose<hr>Add the <i>newly

 created</i> task to the list.'}">

 Add Task

 </button>

 </div>

</div>

Important In the example above, the content of the innerHTML property has been split on
two rows for readability purposes. If you’re typing this code right into a Visual Studio editor,
then make sure that you type it as a continuous string; otherwise your code won’t compile.

Note In this book, you write Windows 8 applications using HTML and other web-related
technologies, such as CSS and JavaScript. In this regard, it might be surprising for any
 developer with a bit of web development experience to arrange a web form without using
the HTML form element and submit buttons. In Windows 8, you just don’t need any form
element since there’s no server-side component to receive the post of the form’s content.
On any form intended to collect input data, all you need to have is one or more buttons to
trigger actions. You can render these buttons using the plain button element.

In Windows 8, you can add a tooltip to any HTML element by simply adding a data-win-control
 attribute set to WinJS.UI.Tooltip. You also use the data-win-options attribute to initialize the new
control. In this case, you pass the innerHTML property the markup text to be displayed when the user
hovers over the button.

Buttons aren’t useful unless they have an associated click event. It is a good programming practice
to associate event handlers to HTML elements during page initialization. In this case, you go back to
the todolist.js file and edit the TodoLit.init function, as shown below:

TodoList.init = function () {

 document.getElementById("buttonAddTask")

138 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 .addEventListener("click", TodoList.addTaskClick);

 TodoList.performInitialBinding()

}

Now, when the user clicks the Add Task button, the code defined in the function TodoList.addTask-
Click runs. This code needs be added to the todolist.js file as well.

TodoList.addTaskClick = function () {

 TodoList.alert("Add Task button clicked");

}

TodoList.alert = function (message) {

 var alertDialog = new Windows.UI.Popups.MessageDialog(message);

 alertDialog.showAsync();

}

For now, clicking on the button only shows the user a message box; later on, you’ll be rewriting
this code to display a summary of the task being saved.

What if you want to add a tooltip to an element that is already being transformed into a Windows 8
component via the data-win-control attribute? For example, how would you add a tooltip to the date
picker component? Here’s some example code:

<div data-win-control="WinJS.UI.Tooltip"

 data-win-options="{innerHTML: 'Specify the due for the task'}">

 <h3>DUE DATE</h3>

 <div class="block-element" id="taskDueDate"

 data-win-control="WinJS.UI.DatePicker" />

</div>

As the preceding markup illustrates, all you need to do is use a wrapper div properly configured so
it will transform into a tooltip component at run time.

putting data into the form
So far, you have defined the layout of the form, and with that task complete, it’s time to think about
how to bind it to data.

Initializing the input form
In the page initialization, you already have a call to a function called performInitialBinding. You need
to add some code to the body of this function. The expected behavior is fairly simple: the function
needs to get a new Task object and bind its content to the elements of the user interface. When the
purpose of the application form is to add a new task, you can pass a newly created (in other words,
blank) instance of the Task object, which is filled with default values.

 CHAPTER 6 The user interface of Windows Store applications 139

However, if the form is being used to edit existing, previously created tasks, then your code must
first retrieve the task to edit, load that data into a fresh instance of the Task object, and then display
it through the user interface.

TodoList.performInitialBinding = function () {

 // This may also be a Task object retrieved from some storage

 var task = new Task();

 // Enable binding on the HTML element(s) of choice

 var bindableElement = document.getElementById("form-container");

 WinJS.Binding.processAll(bindableElement, task);

 // Set the date on the date picker

 var datePicker = document.getElementById("taskDueDate").winControl;

 datePicker.current = task.dueDate;

 // Select the status on the drop-down list

 var dropDownList = document.getElementById("taskStatus");

 dropDownList.selectedIndex = TodoList.getIndexFromStatus(task.status);

}

Data binding works in a cascading manner, in the sense that you attach a data source object to
a container element and then use the WinJS library to resolve dependencies for you. You establish a
dependency between a user interface element and a property in the data source through the data-
win-bind attribute. You can do that through markup attributes, in which case the data binding is
called declarative data binding. You’ll see how to create a declarative binding first. (You can also create
bindings programmatically rather than declaratively, as you’ll see shortly.)

The preceding code shows how to link a data source—the newly created Task object—to the div
element that contains the entire form. This div is the element you are binding. The creation of the link
passes through the processAll function.

Unfortunately, in WinJS, not all components fully support declarative data binding. Data binding works
great as long as you want to bind data to plain HTML elements. If you have more ambitious goals, such as
binding the due date of a Task object to the displayed date of a date picker component, then declarative
data binding is not fully supported. Likewise, declarative data binding is not supported on plain HTML
drop-down lists and Windows 8 doesn’t offer any alternative to plain drop-down lists.

What does this mean to developers?

Quite simply, developers must write some extra lines of code to programmatically bind data to
user interface elements. The lines below, excerpted from the TodoList.performInitialBinding, show how
to programmatically force the date picker to display a particular date and how to programmatically
select an element on a drop-down list using the selectedIndex property.

// Set the date on the date picker

var datePicker = document.getElementById("taskDueDate").winControl;

140 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

datePicker.current = task.dueDate;

// Select the status on the drop-down list

var dropDownList = document.getElementById("taskStatus");

dropDownList.selectedIndex = 1; // Select the second element

You’re all set now, and ready to build and debug the application. You should get what is shown in
Figure 6-10. If not, carefully check the error messages you may receive from either the compiler or the
run time environment.

FIGURE 6-10 The TodoList application in action. Note the tooltip on the Add Task button.

 CHAPTER 6 The user interface of Windows Store applications 141

Building and debugging an application
You write the source code for an application in the context of a Visual Studio solution.
A solution is the repository of all resources required for the application to work: source files,
 images, style sheets, manifest, and so forth.

Having a solution is not the same as having an application; but you can create an executable
application from a solution by successfully “building” (compiling) the solution. To build the
 current solution in Visual Studio, press F7 or select the Build Solution option from the Build
menu, as shown in Figure 6-11. During the build, the Visual Studio environment invokes
the compiler and processes your source code. If everything is OK and no syntax errors are
 detected, you wind up with an executable application that you can launch.

FIGURE 6-11 The Build menu.

When Visual Studio discovers errors during the build step, it lists them for you in a window
at the bottom of the Visual Studio environment. However, when you build a JavaScript
 application (as in this book), it’s unlikely that you will get errors during the build process. It’s
much more likely that you will get run time errors.

Run time errors show up during the debugging phase. The debugging phase is all about
running the application to see if it does what it is supposed to do. You start debugging the
 application by hitting F5 or selecting the Start Debugging option from the Debug menu.

Figure 6-12 shows the effect of a syntax error: a comma is missing right before the
 highlighted line. Note that the message you receive may be a bit misleading about the real
causes of the problem. In the figure, Visual Studio seems to indicate that the code is missing
a closing bracket. That is definitely a possibility, but it is not the real issue with the code in the
figure. The point is that, in general, while you must pay attention to the fact that there is an
error, you should take the specific error messages that appear with a grain of salt, because they
are “automatic guesses” that the software makes, and don’t always reflect the true underlying
problem.

142 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 6-12 A syntax error detected.

Another common situation you may face during debugging is the occurrence of an
 exception. An exception is different from a syntax error: in this case, the code is syntactically
correct, but the logic is incorrect, so the program fails at run time when processing actual data.
An exception is often due to data that is either entered incorrectly by the user or generated by
code. Figure 6-13 shows an exception due to an attempt to use an undefined variable.

FIGURE 6-13 A run time error.

Pop-up windows (like the one in Figure 6-13) appear when the system detects the
 exception. You stop execution by clicking Break; by clicking Continue you instruct the
 application to try to carry on. Most of the time, you just want to break execution, figure out
what went wrong, and fix the code. The Debug output window—usually located at the bottom
of the Visual Studio window—allows you to access the report about what was detected as
wrong in the application at any time (see Figure 6-14).

 CHAPTER 6 The user interface of Windows Store applications 143

FIGURE 6-14 The Debug window.

As you can see in the figure, the Output window offers a drop-down list for you to pick up
the report you need, whether it is about debug or build.

Validating input data
The final step of the TodoList application is to collect input data and summarize that for the user,
which allows them to be able approve the result before opting to save the changes. When the user
clicks the Add Task button, the program should validate and then process the data. In this example,
you won’t be doing any work yet on storage, so the task the user has defined will not be saved
 anywhere. However, validation and summary of the information are two features worth discussing
right away.

Open the todolist.js file and edit the code of the TodoList.addTaskClick function, as shown below:

TodoList.addTaskClick = function () {

 var currentTask = TodoList.getTaskFromUI();

 if (!TodoList.validateInput(currentTask)) {

 TodoList.alert("There is something wrong with the data you entered.");

 return;

 }

 TodoList.displaySummary(currentTask);

}

For now, focus on the TodoList.validateInput function. The function receives a Task object that
has been created and populated with the data entered through the user interface. You also add the
 following code to the todolist.js file:

TodoList.validateInput = function (task) {

 // Check description is NOT empty

 if (task.description.length == 0)

 return false;

 // Check date is a future date

 if (task.dueDate <= new Date())

144 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 return false;

 // Check if perc-completed is >0 and task not started

 // or 100 done but not completed

 if ((task.percCompleted > 0 && task.status == "Not Started") ||

 (task.percCompleted == 100 && task.status != "Completed") ||

 (task.percCompleted != 100 && task.status == "Completed"))

 return false;

 return true;

}

The function returns a Boolean answer to the question: Is the passed Task object valid for the
 purposes of the application? The code ultimately consists of a list of if statements that check business
rules you want to apply.

Summarizing results
Before you can validate a task, you need to collect the actual data and copy that into a Task object.
In WinJS, you can’t rely on the system doing most of the work for you. If you use C# and XAML to
write Windows Store applications, then you can force the system to take the original Task object
you provided to initialize the form and update it with any changes the user makes through the user
interface widgets. This feature is known as two-way data binding, but is not supported in WinJS. As a
result, you need to introduce a function like the one below. You can copy the code below in todolist.js.

TodoList.getTaskFromUI = function () {

 var task = new Task();

 // Read the subject of the task

 var taskSubject = document.getElementById("taskSubject");

 task.description = taskSubject.value;

 // Read the due date of the task

 var taskDueDate = document.getElementById("taskDueDate").winControl;

 task.dueDate = taskDueDate.current;

 // Read the priority of the task

 var taskPriority = document.getElementById("taskPriority");

 task.priority = taskPriority.value;

 // Read the status of the task

 var taskStatus = document.getElementById("taskStatus");

 task.status = taskStatus.options[taskStatus.selectedIndex].value;

 // Read the percentage of the task completed

 var taskPercCompleted = document.getElementById("taskPercCompleted");

 CHAPTER 6 The user interface of Windows Store applications 145

 task.percCompleted = taskPercCompleted.value;

 return task;

}

When an INPUT element is used, you read its current content—whether text or numbers—using
the value property. If you have drop-down list, then you need to retrieve the selectedIndex property
of the list first and then map the index to the collection of list items—this collection is referred to
as options. Finally, if you used a WinJS component (such as, the date picker), then you first need to
retrieve its instance via the winControl property.

At this point you have retrieved the Task object given by the data the user has entered and this
object can be validated. If validation is successful, then you can proceed and display a summary of the
data (or just save it somewhere). To top off this exercise, you now use a FlyOut component to display
the task information in some formatted way.

In default.html, you add the following markup just before the footer. The markup defines a FlyOut
component but just leaves it empty.

<div data-win-control="WinJS.UI.Flyout" id="flyoutSummary"></div>

In todolist.js, you now add a final piece of code—the TodoList.displaySummary function. This
 function will retrieve the reference to the FlyOut component, fill it up with task data, and show it to
the user.

TodoList.displaySummary = function (task) {

 var description = "<p>DESCRIPTION: " + task.description + "<p>";

 var dueDate = "<p>DUE DATE: " + task.dueDate + "<p>";

 var priority = "<p>PRIORITY: " + task.priority + "<p>";

 var status = "<p>STATUS: " + task.status + "<p>";

 var percCompleted = "<p>% COMPLETED: " + task.percCompleted +

 "<p>";

 // Build the entire content string and attach it to the flyout

 var summary = description + dueDate + priority + status + percCompleted;

 document.getElementById("flyoutSummary").innerHTML = summary;

 // Display the flyout

 var anchor = document.getElementById("buttonAddTask");

 var flyoutSummary = document.getElementById("flyoutSummary").winControl;

 flyoutSummary.show(anchor);

}

The preceding code first prepares a bunch of individual strings that correspond to the various
properties of the task object you want to summarize. Next, you create a comprehensive string from all
the individual strings, and programmatically attach this new comprehensive string to the body of the

146 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FlyOut component by setting the innerHTML property on the flyoutSummary element of the page.
Finally, you show the FlyOut component. Note that a FlyOut component needs an anchor element
that determines where the fly out will display—in this case, you can use the Add Task button element
as an anchor. Figure 6-15 provides a view of the summary fly out.

FIGURE 6-15 Summarizing work done to the user.

Summary

Although incomplete—you didn’t do anything to save the task—this exercise showed you several
 aspects of Windows 8 applications. You managed the user interface using a mix of HTML elements
and native Windows 8 components. You employed data binding techniques and learned how to
structure the JavaScript code you need to have in any solution. In the following chapters, you’ll return
to the TodoList application to add some more features, such as storing tasks and reading them.

In the next chapter, you’ll go through some basic (but still effective) exercises involving images and
media content.

 147

Chapter 7

Navigating through
multimedia content

The greatest challenge to any thinker is stating the problem in a way that will allow
a solution.

—Bertrand Russell

In this chapter, you’ll explore the capabilities of the Windows 9 JavaScript (WinJS) library—as far as
the display of multimedia content is concerned. You’ll see how to build a gallery of images, how to

zoom them in and out, and investigate ways to watch YouTube videos from within a Windows Store
 application.

Foundation of page navigation

So far in this book, all the applications you have created have used the Blank App template. That
 template is fine for applications that consist of a single page. But what if you want to build an
 application that displays multiple pages and requires users to navigate between them? Before you
start with the nitty-gritty details of getting pictures and video clips into your apps, a brief exploration
of the framework that provides navigation is in order. Next, armed with this knowledge, you can start
planning a gallery where users can scroll images and click them to perform additional tasks.

The navigation model of Windows Store applications
To jump from one page to another is no big deal; you just invoke a specific piece of code that links to
another page. Or, easier still, you just use an HTML hyperlink element.

While both of these approaches work well, you should note that WinJS has a richer set of
 functionalities available. These functionalities not only let you display a different page, but also track

http://www.quotationspage.com/quote/27616.html
http://www.quotationspage.com/quote/27616.html

148 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

the user’s navigation history, letting you provide a better user experience as you merge new pages
into the existing layout.

Jumping to a different page
The benefit of using the native Windows Store navigation model is well illustrated by the diagram in
Figure 7-1.

FIGURE 7-1 Jumping from one page to another using the classic HTML hyperlink element.

After clicking the link (or some button), the user sees a completely different page. It is your
 responsibility to ensure that the user experiences a strong feeling of continuity. You typically achieve
that by giving both pages the same layout, using a common color scheme, and fonts. In addition, you
should provide users with links to return to the previous page, since you won’t get any browser-like
Back button automatically from the system.

Displaying a different page
The idea behind the Windows Store application navigation model is that the application consists
of a single main page and a number of page fragments. The main page contains the header, footer,
menus, and other shared parts of the user interface. In contrast, a page fragment just provides new
content to replace the content in the main page. In this way, all common parts of the UI remain
unchanged during navigation, so the user has the feeling of having changed only context, rather
than having jumped to an entirely new place. Figure 7-2 illustrates the Windows Store application
 navigation model.

FIGURE 7-2 Displaying different content within the same container.

 CHAPTER 7 Navigating through multimedia content 149

In the start fragment, you may have buttons and controls through which you control navigation.
You are in no way forced to have hyperlinks. When you navigate away from a page fragment, the
 system does all the work that is required to display the new content effectively to the user. At the
same time, the newly displayed page is only responsible for displaying a Back button. The logic to
navigate back is gently offered by the WinJS framework.

Inside the Navigation App template
The first example you build in this chapter is an extension of the sample application you got by
 creating your Windows Store application project from the Navigation App template in Microsoft
Visual Studio. Let’s then get familiar with the programming model.

Creating a navigation app
You open Visual Studio and create a brand new project using the Navigation App template. You call
this project Gallery, as shown in Figure 7-3.

FIGURE 7-3 Creating a Navigation App project.

The project contains a few more files than the Blank App template that you’re used to. The familiar
default.html page plays the role of the main page of Figure 7-2. Companion files default.css and
 default.js just provide style sheets and scripts for elements within the main page.

In Figure 7-4, you also notice a brand new pages folder. This is the folder where you will group all
of your fragment pages, each in a separate subfolder. By default, the pages folder has one subfolder
named home; this is also the name of the only fragment available initially. The home folder contains
home.html, home.css, and home.js. This is a standard pattern: The CSS file contains all style sheets
used by the HTML file and the JS file contains all the required script.

150 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 7-4 The Navigation App project.

Another difference from the Blank App template is the navigator.js file. The file contains the
 implementation of the Application.PageControlNavigator object. You can consider this file as an
 extension of the native WinJS library.

Note If you open up the default.js file, and compare it to the same file you get with
a Blank App, you see some differences too. In particular, the file contains the logic
that automatically navigates to the URL pointed to by the home property of the
PageControlNavigator object.

Setting up the home screen
The default.html determines the main user interface of the application. It contains the following code:

<div id="contenthost"

 data-win-control="Application.PageControlNavigator"

 data-win-options="{home: '/pages/home/home.html'}">

</div>

This code sets up the navigator and makes it point to home.html as the provider of the fragment
for the initial screen. To arrange the home screen, you make changes to default.html. For example,
you can add the same header.html and footer.html files that you created in the previous chapter to the
pages folder. Next, you edit the BODY of default.html, as shown below:

<div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/header.html'}"></div>

<h1 class="title">My Pet Gallery</h1>

<div id="contenthost"

 CHAPTER 7 Navigating through multimedia content 151

 data-win-control="Application.PageControlNavigator"

 data-win-options="{home: '/pages/home/home.html'}">

</div>

<div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/footer.html'}"></div>

When the user navigates to another page fragment, only the content of the contenthost element
will be replaced—everything else will remain unchanged. Figure 7-5 shows the home screen; the
dashed area indicates the area reserved to the contenthost element, where each successive page will
be loaded and displayed.

FIGURE 7-5 The layout of the home screen.

With this infrastructure set, you are now ready to build the picture gallery.

152 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Building a gallery of pictures

How would you lay out a gallery of pictures? That mostly depends on your creativity and preferences.
In general, a gallery should provide a scrollable list of small images—ideally thumbnails—and give
the user a chance to click one image to see it in a larger format and possibly zoom on it. To build the
gallery of pictures, you focus on the content of the home.html file.

Introducing the FlipView component
WinJS comes with a readymade component that is perfect to build a gallery of pictures. This compo-
nent is WinJS.UI.FlipView. A flip view displays as a scrollable list—either vertical or horizontal. The list
is arranged in such a way that only one item is displayed at a time. The native user interface of the
component also provides navigation buttons for the user to move to the next or the previous item.

The item can have any representation that makes sense for the application. It doesn’t have to be
an image and it doesn’t have to be some plain text. In general, along with a flip view, you define the
blueprint of the item to display and define a graphical template for it.

Defining the item to display
As a first step, you define a model for the item you want to display through the flip view. Because you
want the flip view to implement a gallery of images, the item is well represented with the URL of the
physical image and a caption. You create a new JavaScript file and add it to the project in the Js folder.
Let’s call this file gallery.js and add the following code to it:

var GalleryApp = GalleryApp || {};

var Photo = WinJS.Class.define(function (img, title) {

 var that = {};

 that.imageUrl = img;

 that.title = title;

 return that;

});

GalleryApp.init = function () {

 var photos = [

 new Photo("images/data/german-sheperd.png", "German sheperd"),

 new Photo("images/data/tiger.png", "Just bigger than a cat"),

 new Photo("images/data/lion.png", "Just hairier than a cat"),

 new Photo("images/data/leopard.png", "Running as a leopard"),

 new Photo("images/data/dane.png", "Hungry from Denmark")

];

}

The Photo object will represent the item displayed through the flip view. In this basic example,
you can safely assume that all the images are packaged with the application. In a more realistic

 CHAPTER 7 Navigating through multimedia content 153

 application, you might want to get all pictures from the local disk or perhaps from Flickr. For the
 exercise to work, you need to have five .png image files ready and add them under the images folder
of the project. To keep these images distinct from all other images you usually have in the project
(logo files, for example), it is advisable that you also create a data subfolder under images and copy
the files there.

Note There is no special reason why the images are .png files. You can use .jpg or .gif
 images as well. If you use .png files, however, then you can give them a transparent
 background with some ad hoc tool such as Paint.NET, which produces a much nicer
 graphical effect. Also, note that when you build galleries of pictures you might want to
 ensure that all the pictures are the same size. In the example, they’re all 250 x 250 pixels.

Creating the FlipView component
To add the FlipView component, you open the home.html file and make sure it contains the following
code in the BODY element:

<div class="fragment homepage">

 <h1>My Pet Gallery</h1>

 <div id="gallery"

 data-win-control="WinJS.UI.FlipView">

 </div>

</div>

This code just gets you a new instance of the FlipView component. The next step consists of
 binding it to some photos. You open the gallery.js file and add the following code to it:

var Gallery = WinJS.Class.define(function (arrayOfPhotos) {

 var that = {};

 that.photos = new WinJS.Binding.List(arrayOfPhotos);

 return that;

});

Next, you edit the previously created Gallery.init method, as shown below:

GalleryApp.init = function () {

 var photos = [

 new Photo("images/data/german-sheperd.png", "German sheperd"),

 new Photo("images/data/tiger.png", "Just bigger than a cat"),

 new Photo("images/data/lion.png", "Just hairier than a cat"),

 new Photo("images/data/leopard.png", "Running as a leopard"),

 new Photo("images/data/dane.png", "Hungry from Denmark")

];

 GalleryApp.Gallery = new Gallery(photos);

154 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 var flipView = document.getElementById("gallery").winControl;

 flipView.itemDataSource = GalleryApp.Gallery.photos.dataSource;

}

At this point, the FlipView component is bound to the array of photos. If you run the application
now, it works and the FlipView performs its tasks really well. Unfortunately, the resulting application is
neither attractive nor useful for the user. The FlipView scrolls through the bound list of Photo objects
but it can only render them as plain text. Figure 7-6 shows what you get at this point.

There’s one more piece of code that needs be explained. You open the home.js file and add a call
to GalleryApp.init in the ready event handler so that the FlipView can be initialized when the home
page is loaded.

(function () {

 "use strict";

 WinJS.UI.Pages.define("/pages/home/home.html", {

 ready: function (element, options) {

 GalleryApp.init();

 },

 unload: function () {

 }

 });

})();

The unload event handler is empty now, but you’ll be using it in a moment.

FIGURE 7-6 The FlipView just showing some bound data.

 CHAPTER 7 Navigating through multimedia content 155

Adding a template for the item
The next step is adding a template so that the FlipView can render the bound Photo objects in a nicer
way. You go back to gallery.js and add the following line to GalleryApp.init:

 flipView.itemTemplate = document.getElementById("gallery-template");

You also need to define the template gallery-template in the home.html file. You add the following
to the BODY of the home.html file:

<div id="gallery-template" data-win-control="WinJS.Binding.Template">

 <div id="template-container">

 <div class="overlay">

 <h2 data-win-bind="innerText: title"></h2>

 </div>

 </div>

</div>

The item template is made of an IMG element and an H2 element. These elements are bound to
the properties of the Photo object. You also need to add a few styles to home.css:

#gallery {

 width: 600px;

 height: 350px;

 border: solid 4px #5a12f3;

 background-color: #2c668d;

}

.image {

 width:100%;

 border: solid 1px #fff;

}

#template-container {

 display: -ms-grid;

 -ms-grid-columns: 1fr;

 -ms-grid-rows: 1fr;

 width: 350px;

 height: 300px;

 background-color: #2faee6;

}

.overlay {

 position: relative;

 background-color: rgba(0,0,0,0.5);

 -ms-grid-row-align: end;

 height: 30px;

 padding: 10px;

 margin: 3px;

156 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 overflow: hidden;

}

The first step of the exercise is now complete: run the application and you should see what’s in
Figure 7-7.

FIGURE 7-7 A fully functional FlipView component.

Navigating to a detail page
A gallery of images wouldn’t be a gallery if it didn’t allow users to click displayed items and navigate
to a detail page. This is precisely what you are going to do as the second step of the exercise.

retrieving the bound item
As a first step, you add a click handler on the DIV element that contains the item template. You just
add the onclick attribute to the DIV element, as shown below. In this way, any time the user clicks (or
taps) the DIV—basically the entire area of the image—she triggers the handler.

<div id="template-container" onclick="GalleryApp.showDetails()">

 ...

</div>

 CHAPTER 7 Navigating through multimedia content 157

In the click handler, you need to do a couple of things. First, you retrieve the index of the selected
item and from there the bound photo. Second, you navigate to the detail page. Open the gallery.js
file and add the following code:

GalleryApp.getCurrentPhotoIndex = function () {

 return document.getElementById("gallery").winControl.currentPage;

};

GalleryApp.showDetails = function () {

 var currentIndex = GalleryApp.getCurrentPhotoIndex();

 var photo = GalleryApp.Gallery.photos.getAt(currentIndex);

 WinJS.Navigation.navigate("/pages/details/details.html", photo);

};

The currentPage property of the FlipView component returns the index of the clicked item. You use
the getAt method of the binding list to retrieve the actual Photo component that the user clicked. A
binding list is just a wrapper around an array of objects that is created only for data binding purposes.

Defining the detail page
Now that you hold the selected Photo object, you can think of the detail page. The purpose of the
detail page is simply to show more information about a particular Photo object. As shown in Figure
7-8, you add a new Page control under the pages/details folder. The details folder should be created
before you try to add the details.html page.

The Visual Studio wizard adds three new files to the project: details.html, details.css, and details.js.

FIGURE 7-8 Adding a detail page.

158 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The BODY element of the details.html page should contain the following markup:

<div class="details fragment" type="button" />

 <header aria-label="Header content" role="banner">

 <button class="win-backbutton" aria-label="Back" disabled type="button"></

button>

 <h1 class="titlearea win-type-ellipsis">

 <span class="pagetitle"

 data-win-bind="innerText: GalleryApp.DetailsPageModel.currentPhoto.

title">

 </h1>

 </header>

 <section aria-label="Main content" role="main">

 </section>

</div>

The most important thing in this page is the HEADER element. It contains the Back button that the
internal navigation system will use to let users return to the previous page. The CSS style win-back-
button does the trick of styling the button and it allows the system to retrieve the button wherever
you place it in the page.

The details.html page is bound to some data. Its model is represented by the GalleryApp.Details
PageModel object. You declare this object in gallery.js:

GalleryApp.DetailsPageModel = {};

When is this object actually initialized? It happens in the details.js file which you slightly edit to
contain the following code:

(function () {

 "use strict";

 WinJS.UI.Pages.define("/pages/details/details.html", {

 ready: function (element, options) {

 GalleryApp.DetailsPageModel.currentPhoto = WinJS.Navigation.state;

 WinJS.Binding.processAll();

 },

 unload: function () {

 // TODO: Respond to navigations away from this page.

 }

 });

})();

 CHAPTER 7 Navigating through multimedia content 159

You define a page object and also specify a couple of lifecycle events: ready for when the page is
loaded, and unload for when the page is navigated away and then unloaded. In the ready event you
complete initialization by retrieving any passed data and binding it to internal data structures.

The detail page may receive optional information from the caller page. In this case, the detail page
receives information about the photo to display. Any cross-page information is retrieved via the state
property of the WinJS.Navigation object. This remark introduces another whole point to consider
about navigation: how to share data between pages.

passing data between pages
In gallery.js, the code that navigates to the detail page is shown below:

WinJS.Navigation.navigate("/pages/details/details.html", photo);

What’s the role of the photo argument? The answer is any parameter(s) you want to pass to the
destination page. It can be any JavaScript object and the actual content is up to you. Put another
way, you are free to give this object any shape that suits your needs. This value is retrieved by the
 destination page through the state property of the WinJS.Navigation object.

With this code in place, try running the application.

You navigate to, say, the third photo in the flip view, click the photo, and go to the detail page.
The detail page just shows the title of the photo; everything is working as expected in Figure 7-9.

FIGURE 7-9 The detail page with the Back button.

160 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Now try hitting the Back button. Quite surprisingly, you are not returned to the photo where you
navigated from. You are, instead, returned to the first photo of the flip view. To complete this part of
the exercise, therefore, you have two more steps to accomplish: find a way to persist the index of the
last photo visited in the flip view and give a richer template to the detail page.

persisting information across page navigation
When you navigate from one page to the next, the context of the application changes and existing
controls are dismissed. The flip view is then dismissed when you jump to the detail page, and it is
re-created when you return to the home page. The index of the photo that was visible at the moment
of navigation is just lost. To fix things, you need to accomplish three steps:

1. Store the index of the currently visible item in some store that survives the change of page.

2. Instruct the flip view to accept an extra parameter that indicates the starting item.

3. Retrieve the last-visited index from the store and pass it to the flip view; if no index can be
found, then tell the flip view to start from the first item in the bound list of items.

For the first step, you go back to home.js and add a line to the unload event handler.

(function () {

 "use strict";

 WinJS.UI.Pages.define("/pages/home/home.html", {

 ready: function (element, options) {

 GalleryApp.init();

 },

 unload: function () {

 WinJS.Application.sessionState.currentPhotoIndex = GalleryApp.

 getCurrentPhotoIndex();

 }

 });

})();

The unload event handler responds to navigations away from the page. From within this
event handler, you can save the index of the current photo to the application’s session state. The
 sessionState property of the WinJS.Application object is the system-provided container where
 developers should save any information that may be used to restore the application’s state after the
application has been suspended and then resumed. The sessionState object is a plain dictionary and
can be shaped up at will. In other words, if you need to add a custom property to the sessionState
object, you just add it and go—as you did with currentPhotoIndex in the preceding code snippet.

In this case, the application is not going to be suspended—the application is simply navigating to
another page—but the sessionState is still working and, better yet, you end up having a flip view that
can display its original state also when resumed from suspension.

 CHAPTER 7 Navigating through multimedia content 161

Note Application suspension hardly applies to applications running on a laptop or PC.
It is a scenario that applies to applications running on mobile devices. For example, the
 application is suspended on a tablet when another application is run in the foreground or
when the screen gets engaged.

Let’s see how to instruct the flip view to retrieve information from the sessionState and how to start
from a given item. You open gallery.js again and add the following lines at the end of the GalleryApp.
init function.

 var startIndex = WinJS.Application.sessionState.currentPhotoIndex;

 flipView.currentPage = startIndex;

If there’s no information saved to the sessionState, the startIndex variable is set to undefined.
 However, the FlipView component is smart enough to start anyway from the first element if the value
set to its currentPage property is not a valid index.

Zooming the image in and out
To complete the exercise, you now need to add some template and behavior to the detail page. The
idea is to display the same image the user clicked in the flip view and enable some zoom capabilities.

Defining the template for the detail page
First, you write some additional markup for the detail page. Open details.html and fill up the SECTION
element you find already in the body of the page with the following:

<section aria-label="Main content" role="main">

 <img id="zoomable-image" src="#" alt=""

 data-win-bind="src: GalleryApp.DetailsPageModel.currentPhoto.imageUrl" />

</section>

The same image you picked up in the flip view is now displayed in the detail page. As a user, how
would you like to zoom on the image? This is a point that deserves some attention.

On a classic PC application, a typical user would probably find it natural to click the image to zoom
in and click with the right button to zoom out. A Windows Store application, though, is designed
to be used on a PC as well as touch-enabled devices, such as a tablet. The ideal gesture to zoom
for the user of a tablet would be “pinch-and-zoom.” Implementing pinch-and-zoom is definitely
 possible in WinJS but a lot is left to you. In addition, it wouldn’t solve the problem of zooming where
a non-touch device is available. For the sake of simplicity, you can opt for yet another approach that
works great for both touch and non-touch devices.

162 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Note WinJS provides the GestureRecognizer class to give you information about touch
 manipulations being performed by the user. You can use this class to know about the
 distance between start and final position of the fingers during a pinch movement. If the
distance is positive you zoom in; otherwise you zoom out.

Adding a slider to select the zoom level
A trick to set a zoom level on an image (but more in general on any zoomable content) that works
great on any sort of device is using a slider. The slider, in fact, can be easily manipulated through the
mouse and through the finger. To add a slider component to the detail page, you need the following
markup in details.html:

<section aria-label="Main content" role="main">

 <input id="zoom-slider" type="range"

 min="1" max="5" value="1" step="0.1" onchange="GalleryApp.zoomImage()" />

 <bZoom level:</b

 1

 <div id="zoomable-image-container">

 <img id="zoomable-image" src="#" alt=""

 data-win-bind="src: GalleryApp.DetailsPageModel.currentPhoto.imageUrl"

/>

 </div>

</section>

The slider is given by an INPUT element with the type attribute set to range. The min and max
attributes indicate the range of values the user can select via the control. The step attribute indicates
the step of increment or decrement. As you are using the slider to set a zoom level, overall 1 and 5
form a good interval, and 0.1 as a step provides a pleasant experience.

By default, the WinJS slider displays a tooltip to give visual feedback of the value being set. For
some reason, the tooltip appears only for integer values. This forces you to introduce some other way
to let the user know about the zoom level being set. At the same time, you probably want to dismiss
tooltips in total. It only requires a small edit in details.css:

.details input[type=range]::-ms-tooltip {

 display: none;

}

Note that the .details token in the style sheet expression indicates that tooltips are suppressed
only for slider components within an element marked with the details class. The details class is used to
mark only the body of the details.html page. You can cross-check this looking at the full source code
of the details.html page.

 CHAPTER 7 Navigating through multimedia content 163

Manipulating the image
The slider features a handler for the onchange event. Such a handler is required to give you a chance
to do some work whenever the selection on the slider changes. In particular, you might want to
 update the text near the Zoom level label, and zoom the image accordingly. The code required is
added to the gallery.js file:

GalleryApp.zoomImage = function () {

 var container = document.getElementById("zoomable-image-container");

 var slider = document.getElementById("zoom-slider");

 var img = document.getElementById("zoomable-image");

 var label = document.getElementById("zoom-level");

 // Do some calculation

 var w = container.clientWidth;

 var h = container.clientHeight;

 var zoom = slider.value;

 var offset = ((w * zoom) - w) / 2;

 // Refresh the user interface

 img.style.zoom = zoom;

 container.scrollLeft = offset;

 container.scrollTop = offset;

 label.innerHTML = zoom;

}

The zoomable image lives in a DIV container, as styled below. The style should be added to default.css.

#zoomable-image-container {

 width: 250px;

 height: 250px;

 border: solid 1px #fff;

 position: relative;

 overflow: scroll;

}

The value of the zoom level is saved to the zoom variable and used to calculate the offset for the
container’s content. The offset is half the difference between the current width (and height) of the
container and the effective size of the image with updated level of zoom. In general, you need to
have both a horizontal and vertical offset. As in this example, images are assumed to be square so
you only need to calculate one offset. Figure 7-10 explains the logic behind the calculation.

164 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 7-10 Mechanics of image zooming via CSS.

Figure 7-11 shows the final result of the exercise.

FIGURE 7-11 Zooming the image in and out.

 CHAPTER 7 Navigating through multimedia content 165

Building a video clip gallery

After having built an image gallery, let’s go ahead and try to build a video gallery while using a
 different control to organize navigation. To be precise, in this new exercise there will be navigation
but it will be embedded in a new component—the SemanticZoom component. The application will
group clips by category and show the available clips once the user has made a selection. Finally,
 clicking the clip will play the video.

Note The SemanticZoom component only provides a fixed form of navigation through
some content in a master/detail way. The application programming interface (API) for
 navigation you discovered in the previous exercise is, instead, a more powerful and
 general-purpose API for navigating between any number of pages and at any number of
nesting levels.

Introducing the SemanticZoom component
As you rely on the built-in capabilities of a specific component to switch between master and detail
view, there’s no need to start from a Navigation App template. Let’s create a new Blank App project
and name it Video. As usual, you might want to add header.html and footer.html and make edits to
default.css, so that the look and feel of the application is the same as other examples. In particular,
you might want to import into default.css the styles for HEADER, FOOTER, and BODY elements that
you used for all past examples.

Important Unless otherwise noted, adding header.html, footer.html, and making
 related changes to default.css will be considered a required preliminary step for any
of the upcoming exercises. Note also that you probably won’t experience any major
 inconvenience if you miss it—at worst, you’ll run into some graphical inconsistencies!

Another aspect of nearly all Windows Store applications that will be taken for granted in
the rest of exercises is the way in which startup code is injected in the application. So far,
you added a then function call to the activation event handler in default.js. A neater, but
functionally equivalent, way of doing the same thing is the following:

 app.onready = function (args) {

 VideosApp.init();

 };

You place this code in the immediate function that the default.js file is usually made of.
From within the onready function, you simply call the init function on the application
 specific object you create for the exercise. A standard pattern of all exercises in the book
is having most script gathered in a single JavaScript file with an init function to do all the
 initialization work.

166 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

What’s semantic zoom, anyway?
In spite of the name, semantic zoom has very little to do with zooming—at least according to the
common meaning of the term used so far. What the component does is switch between two different
views of the same content. One view is the master view; the other is the detail view. The detail view is
considered the zoomed-in view, namely the most detailed view of the content available. Conversely,
the master view is referred to as the zoomed-out view, namely the one where elements are grouped
in classes for the ease of selection.

preparing the ground for semantic zoom
You prepare a page for semantic zoom by adding three DIV elements. The following is the code you
need to enter in the BODY element of the default.html page.

<div id="semantic-zoom-container"

 data-win-control="WinJS.UI.SemanticZoom">

 <!-- The zoomed-in view. -->

 <div id="listview-in"

 data-win-control="WinJS.UI.ListView"></div>

 <!--- The zoomed-out view. -->

 <div id="listview-out"

 data-win-control="WinJS.UI.ListView"></div>

</div>

 The parent DIV is mapped to an instance of the WinJS.UI.SemanticZoom component. The two
child DIVs are mapped to instances of the WinJS.UI.ListView components. The great news is that
your only concern is giving list views a template and content; switching between views and the user
 interface for doing that is gently offered by the SemanticZoom component.

Defining ad hoc data for semantic zoom
As usual, you add a new JavaScript file to the project to contain most of the logic for the application.
In this case, you can name the file videos.js. Next, you open the file and add the following code:

var VideosApp = VideosApp || {};

var Clip = WinJS.Class.define(function (category, title, id) {

 var that = {};

 that.title = title;

 that.category = category;

 that.videoId = id;

 that.videoUrl = "http://www.youtube.com/embed/" + id + "?html5=1";

 that.posterUrl = "http://img.youtube.com/vi/" + id + "/1.jpg";

 return that;

});

 CHAPTER 7 Navigating through multimedia content 167

The Clip object represents the information you’ll be working with in the exercise. It represents a
YouTube video and it has a category and a title. The videoId property represents the unique YouTube
identifier of the clip. The videoUrl property returns the URL required to view the clip from within a
Windows Store application; the posterUrl property returns the URL required to get the poster image
for the video from YouTube.

The next step consists of creating a bindable collection of data. This step is not really different from
the step you accomplished in the previous exercise. Also, add the following code to the videos.js file:

VideosApp.init = function () {

 var videos = [

 new Clip("Shots", "Top 10 Best Tennis Shots Ever", "WyJM9-7OvZo"),

 new Clip("Fun", "Very funny point", "ybsbzV7fNEo"),

 new Clip("Shots", "Best shot of 2012", "tEAkvegtPyw"),

 new Clip("Shots", "Insane passing shot", "UH5TMp_bH8k"),

 new Clip("Events", "Most important match point", "xHUwmMyRVJI")

];

 // Create a WinJS.Binding.List from the array.

 var videosList = new WinJS.Binding.List(videos);

 var videosListGrouped = videosList.createGrouped(

 function (clip) { return clip.category; }, // group by this key

 function (clip) { return { category: clip.category } } // data for the

 master view data

);

}

So you have a collection of tennis-related video clips and you catalogued them in three main
 categories: Shots, Fun, and Events. Needless to say, this classification is entirely arbitrary and
 categories, as well as titles, are entirely up to you.

Grouping data for semantic zoom
In a Windows Store application, you are not allowed to perform data binding on raw JavaScript
 arrays; you first need to transform arrays in a binding list. You do that through the WinJS.Binding.List
object. This is just what you did to populate a FlipView component in the previous exercise. With a
 SemanticZoom component, an extra step is required.

A binding list object exposes the method createGrouped through which you create a groupable
binding list. As you can see above, the createGrouped method takes two functions as arguments. The
first function just identifies the key on which the items will be grouped. The second function returns
the JavaScript object that will be used to render each item in the master view. Let’s examine the code
more closely:

var videosListGrouped = videosList.createGrouped(

 function (clip) { return clip.category; },

168 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 function (clip) { return { category: clip.category } }

);

Both functions are called on each item in the bound list. The first function returns the expression
to group items on. In this case, you group video clips on category. In other cases, it could have been
the initial of contact names or a combination of multiple properties. The second function just returns
a literal JavaScript object with the information you intend to display in the master view. It could be
the whole Clip object; in this case, you may use a simpler object that just includes the category. This
means that in the zoomed-out master view, the only information available is the category name.

Binding data for semantic zoom
Binding data to the SemanticZoom component and its child ListView components requires a few lines
of code. You add the following at the end of the VideosApp.init function in videos.js:

var detailView = document.getElementById("listview-in").winControl;

detailView.itemDataSource = videosListGrouped.dataSource;

detailView.groupDataSource = videosListGrouped.groups.dataSource;

detailView.itemTemplate = document.getElementById("zoomed-in-template");

detailView.groupHeaderTemplate = document.getElementById("header-template");

var masterView = document.getElementById("listview-out").winControl;

masterView.itemDataSource = videosListGrouped.groups.dataSource;

masterView.itemTemplate = document.getElementById("zoomed-out-template");

Note that you need to bind data twice to the details view. First you provide the plain list of items
and then the list of calculated groups. For optimal results, the details view needs an item template
and a header template. The master view just needs the list of bound items and an item template.

Before you can have a first look at the work, go back to default.html and add a few templates to
the markup.

<!-- Template for the group headers in the zoomed-in details view -->

<div id="header-template" data-win-control="WinJS.Binding.Template">

 <div class="header-title">

 <h1 data-win-bind="innerText: category"></h1>

 </div>

</div>

<!-- Template for the zoomed-in details view -->

<div id="zoomed-in-template" data-win-control="WinJS.Binding.Template">

 <div class="zoomed-in-item-container">

 <div>

 <h3 data-win-bind="innerText: category"></h3>

 <h6 data-win-bind="innerText: title"></h6>

 CHAPTER 7 Navigating through multimedia content 169

 </div>

 </div>

</div>

<!-- Template for the zoomed-out master view -->

<div id="zoomed-out-template" data-win-control="WinJS.Binding.Template">

<div class="zoomed-out-item-container">

 <h1 data-win-bind="innerText: category"></h1>

 </div>

</div>

The elements in the markup are richly styled; so some more work on default.css is in order, too.
Open the file and enter the following CSS styles:

.header-title {

 width: 50px;

 height: 50px;

 padding: 8px;

}

.zoomed-in-item-container {

 width: 280px;

 height: 70px;

 padding: 5px;

 overflow: hidden;

 display: -ms-grid;

}

.zoomed-in-item-container img {

 width: 60px;

 height: 60px;

 margin: 5px;

 -ms-grid-column: 1;

}

.zoomed-in-item-container div {

 margin: 5px;

 -ms-grid-column: 2;

}

.zoomed-out-item-container {

 width: 220px;

 height: 130px;

 background-color: #31cfd4;

}

.zoomed-out-item-container h1 {

 padding: 10px;

 line-height: 150px;

 white-space: nowrap;

 color: #fff;

}

170 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

#listview-in {

 width: 650px;

 height: 300px;

 border: solid 2px #111;

}

#semantic-zoom-container {

 width: 600px;

 height: 350px;

 border-top: solid 2px #31cfd4;

 border-bottom: solid 2px #31cfd4;

}

Everything is ready for testing the application.

Using gradients for the background
You may have noticed that all colors used so far—especially background colors—are solid colors.
Windows 8 makes a strong point of simplicity and solid colors are part of the strategy. However, that
doesn’t mean you can’t use gradients.

A Windows Store application fully supports CSS3, and CSS3 does have a section about gradients.
So here’s an example of a nice (radial) gradient to make the listview background even nicer.

#semantic-zoom-container {

 ...

 background: -ms-radial-gradient(center, ellipse cover, #c5deea 0%,#8abbd7

31%,#066dab 100%);

}

The syntax is fairly simple and based on the pair color/percentage. In particular, the gradient starts
with #c5deea, blends towards #8abbd7, and reaches it around 31 percent of coverage; the gradient
ends with color #066dab. If you like linear gradients, you can use the following syntax:

background: -ms-linear-gradient(left, #3b679e 0%,#2b88d9 50%,#207cca 51%,#7db9e8

100%);

To do a live experiment with gradients, you can pay a visit to http://www.colorzilla.com. And once
there, you can pick up one of the predefined gradients or create and preview your own ones.

Everything is now ready and the results of the exercise are ready to be unveiled, as shown in
Figure 7-12.

 CHAPTER 7 Navigating through multimedia content 171

FIGURE 7-12 A SemanticZoom component showing its master view.

Note that the SemanticZoom component defaults to the details, zoomed-in view. To have it display
in zoomed-out mode by default, you need an extra attribute in default.html:

<div id="semantic-zoom-container"

 data-win-control="WinJS.UI.SemanticZoom"

 data-win-options="{initiallyZoomedOut: true}">

When the user clicks or taps a category, you get what’s in Figure 7-13.

172 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 7-13 A SemanticZoom component showing its details view.

To return to the zoomed-out view, the user clicks the minus button in the bottom right corner of
the screen.

Dealing with video
To end the exercise, you should make users capable of clicking the item that advertises a video clip
and actually play it.

Handling selection
The ListView component supports clicking displayed items. To get notified of the user’s activity, you
register an handler for the iteminvoked event. Just open the default.js file and add the following line
to the VideosApp.init function.

 detailView.addEventListener("iteminvoked", VideosApp.select);

In addition, you create a brand new function named VideosApp.select like so:

VideosApp.select = function (eventInfo) {

 eventInfo.detail.itemPromise.then(function (clip) {

 CHAPTER 7 Navigating through multimedia content 173

 var player = document.getElementById("player");

 player.src = clip.data.videoUrl;

 });

}

The iteminvoked event passes a detail object to handlers with an itemIndex property that simply
returns the 0-based index of the clicked item. It should be noted, though, that there’s no guarantee
that the index really points to the clicked item.

In other words, you may think that, by knowing the index of the clicked item, you’re pretty
much done and all that remains to do is select the corresponding object from the bound list.
Well, depending on the number of categories defined, and the distribution of video clips among
 categories, the index you get may or may not match the displayed video clip. For example, you may
click with the intention of playing video ABC and receive an index of three. However, index three in
the bound list may not be video ABC.

The point is that you bind items in a given order, but then items are rearranged based on
 categories. The index you receive refers to the rearranged order of items; not the original order. For
this reason, you need to resort to the itemPromise property:

eventInfo.detail.itemPromise.then(function (clip) {

 // clip now matches the clicked item

}

The itemPromise property starts an internal search that uses the index as the key to locate the
bound item actually displayed in that position. Once the object has been found, the ListView returns
the object which can then be processed by your code.

playing YouTube video clips
In order to play YouTube videos from your page, you need an IFRAME element that embeds the clip.
So as a first step, you add the following markup to default.html:

<div id="player-container">

 <iframe id="player" height="100%" width="100%" type="text/html"></iframe>

</div>

The IFRAME element misses the URL of the video. The URL is provided dynamically as the user
clicks a given item in the list view. Usually, the YouTube URL takes the following form:

http://www.youtube.com/embed/<id>

The id placeholder indicates the ID of the video. However, this approach just doesn’t work in
 Windows Store applications. The reason is that, by default in the IFRAME body, YouTube inserts a

174 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

piece of HTML that requires the Flash plug-in to play the video. The Flash plug-in is not available for
Windows Store applications.

To fix things for Windows Store applications, you must instruct YouTube to return the video in an
HTML5-compatible format. You do that by using a slightly different format for the video URL:

http://www.youtube.com/embed/<id>?html5=1

In this way, YouTube will insert in the IFRAME a piece of HTML that uses the VIDEO element of
HTLM5 instead of relying on the Flash plug-in. Figure 7-14 provides a screenshot of the final version
of the exercise.

Note You should be aware that, currently not all YouTube videos may be played in
Windows Store applications. First and foremost, owners of the video may have blocked
 embedding of the video. Second, currently YouTube doesn’t play any video that includes
ads or captions through the HTML5 VIDEO element. For more information, have a look at
http://www.youtube.com/html5.

FIGURE 7-14 The final version of the Video Gallery application.

Summary

With this chapter, you completed the overview of the presentation layer of Windows Store
 applications. You learned how to create and manage specialized views, such as flip views, list views,
and master/detail views (known with the fancy name of semantic zoom). You also experienced the

 CHAPTER 7 Navigating through multimedia content 175

navigation system and know what’s required to jump to a different page and pass information to that
page. In this chapter, we also touched on persistence of state through the application’s session state.

In doing so, you also completed a couple of nontrivial exercises and built a couple of interactive
galleries for images and videos. In these exercises, you worked on a fixed collection of images and
videos; however, you learned the foundation of galleries and interaction. Once you grasp the basics of
file and data management, you will be ready for building real-world applications for Windows 8.

The next chapter still revolves around visual aspects of an application. It’s not much about new
widgets and components, though. It will be about states of an application and related display modes.

 177

Chapter 8

States of a Windows 8 application

A goal without a plan is just a wish.
—Antoine de Saint Exupery

A couple of decades ago, the idea of pushing out a window-based operating system where mul-
tiple applications could live side by side was quite revolutionary. Before Microsoft Windows (and

other similar operating systems) came out, users were used to working with a single application at a
time. The active application took control of the machine and its computing resources, and filled up
the entire screen with its content.

More recently, the idea of a single application running in the foreground has been revamped by
mobile operating systems such as iOS, Windows Phone, and Android. After years of Windows and
multiple applications running concurrently in separate windows, the one-application-at-a-time model
was kind of a shock for many users.

What about Microsoft Windows 8?

If you run Windows 8 in desktop mode, then it’s always the same Windows with multiple and over-
lapping windows that can be opened at any time. If you run a Windows Store application instead, you
find out each application usually takes up the full screen and you have no way to interact with other
applications without switching to them and having them, in turn, take the full screen. To be precise,
a Windows Store application can live in a variety of states—full-screen (both landscape and portrait),
filled, and snapped. When not running in any full-screen modes, a Windows Store application splits
the available screen with a second application: one application runs snapped and the other runs filled.

What does that mean to you?

You should ideally provide some degree of adaptation to your application so that the state is
 preserved and the user interface adjusts to a smaller space. Dealing with filled and snapped views will
be the main topic of this chapter.

States of a Windows Store application

Windows Store applications make a point of providing a full-screen and immersive experience to users.
On one end, design guidelines recommend that you keep the user interface fairly simple and focused
to avoid filling up the screen with too many items. On the other hand, as larger and larger screen
 resolutions become available, you take the risk of occupying a large PC screen with little content.

http://www.quotationspage.com/quote/27616.html

178 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Since Windows 8 is an operating system created from the ground up to run on devices of different
sizes, the whole theme of adapting the user interface (and subsequently the user experience) to a
 different screen is topical.

Windows 8 defines a few view states for applications and Windows Store applications receive
proper notifications when the view state changes. What happens next is up to the application. Let’s
find out more about the predefined view states.

Full-screen view states
An application that runs in full-screen mode takes up the entire screen. Unless specified differently
during the startup of the application, this is the default view state of any Windows Store application.
To be precise, Windows 8 defines two full-screen modes—one for each orientation of the device.

Landscape mode
The landscape mode indicates that the device is being held horizontally and that width is larger than
height. The landscape mode can be programmatically detected by looking at the value returned by
the Windows.UI.ViewManagement.ApplicationViewState object. The following code snippet shows
how to detect the landscape mode:

// Grab the current view state

var currentState = Windows.UI.ViewManagement.ApplicationView.value;

// Verify if the app is running in full-screen landscape mode

if (currentState === Windows.UI.ViewManagement.ApplicationViewState.

fullScreenLandscape) {

 ...

}

The operating system detects rotation of the device and automatically flips the user interface and
notifies the application of any change.

portrait mode
The portrait mode indicates that the available screen height now is larger than the width. This
 resolution suggests that it could be preferable for the application to flow content vertically because
there’s both more room to fill and the user may find it easier to scroll down rather than swipe left.
The following code snippet shows how to detect the portrait mode:

// Grab the current view state

var currentState = Windows.UI.ViewManagement.ApplicationView.value;

// Verify if the app is running in full-screen portrait mode

if (currentState === Windows.UI.ViewManagement.ApplicationViewState.

 CHAPTER 8 States of a Windows 8 application 179

fullScreenPortrait) {

 ...

}

Also in this case, the operating system detects rotation of the device and automatically orders the
application to repaint its user interface.

Important As it turns out, full-screen rotations may require some adjustments to the over-
all user interface of the application. It is not unusual that some content originally designed
to extend horizontally needs be reorganized so that it also looks great on a device held in
portrait mode. The operating system doesn’t handle this aspect for you. All the operating
system does is let the application know about view changes and ordering a repaint.

Snapping applications
The user can turn in the snapped state one of the applications that is currently running in the
 background. As a user, you pop up the switch list on the left side of the device and right-click the tile
of the application of choice. As Figure 8-1 shows, you can decide to snap the application to the left or
the right edge.

FIGURE 8-1 Turning a background application into the snapped state.

The result of this action is shown in Figure 8-2. When snapping is on, one application is said to
be snapped; the other application previously running in full-screen mode is turned into a view state
named filled.

180 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 8-2 The Calendar application is now snapped to the left edge.

The snapped view state
When snapped, an application is resized to a segment of the screen that is only 320 pixels wide and
takes the entire height of the screen. As Figure 8-2 shows, the remaining screen is filled up by the
 application that was running in the foreground when you snapped. With snapping, therefore, users
can have two applications in the foreground and can really work with both at the same time.

Important There are a couple of key things to remark on regarding Windows 8 snapping.
First, snapping is only available when the horizontal resolution of the screen is at least 1366
pixels. Users who try to snap applications on lower resolutions will simply find the context
menu of Figure 8-1 limited to the Close option. Second, snapping is only available in
 landscape mode. If you have an application snapped, and then rotate the device to portrait,
you lose the effect. The non-snapped application will regain the full screen in portrait view.
However, the setting about snapping is maintained and snapping is automatically restored
as soon as the user rotates back to a landscape view.

Also, you should note that users are not allowed to arbitrarily resize the snapped area either. The
split bar of Figure 8-2 that separates the snapped and filled applications can’t be moved at will. If
a user moves the split bar to the right, then she can achieve one of the following effects: the two
 applications swap their view state or the snapped application gets into full-screen mode, pushing the
other to the background. In the former case, the outcome will be that the Calendar app switches to
the filled state and the other application gets snapped to the right edge.

The filled view state
When snapping is on, the screen is shared horizontally by two applications: the snapped application
and the filled application (see Figure 8-3).

 CHAPTER 8 States of a Windows 8 application 181

FIGURE 8-3 Fundamental aspects of snapped and filled applications.

Any application can experience both view states during its lifecycle. It’s up to the user, not the
application, to decide about the display mode. From the application’s perspective, support for view
states (including snapped and filled view states) is all about being ready to render any content in a
screen of different sizes.

The behavior of a Windows Store application is not supposed to change when running in a view
state different from full-screen. There’s a specific guideline that strongly recommends this. It is
 reasonable to expect that very little changes in the application’s behavior and user interface when the
application is run in landscape, portrait, or filled mode. At the same time, not all applications can be
resized to a sliver of the original screen and still maintain 100 percent of their functionality.

You’ll see in a moment how to detect view state changes in a Windows Store application and what
it possibly means for your application to support well different resolutions. Before going any further,
look at Figure 8-4.

The figure doesn’t show a screenshot but it rather contains a diagram that seeks to illustrate the
difficulty of (some) applications to adapt to different resolutions.

FIGURE 8-4 From full-screen view to snapped view: how to adjust the user interface?

182 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

When snapped, an application has only 320 pixels in width to render its user interface. The width is
at least three times larger in the majority of cases.

A golden rule of Windows Store applications can be quickly summarized as, “Be ready to do
 something significant with about 320 x 760 pixels.”

Making the application reactive
Let’s see now what an application should do in order to detect and possibly handle view state
changes. Create a new Windows Store application starting from the Blank App project template; you
can name this application SnapMe. Next, make all the preliminary changes to the project that you
did in all previous examples. This entails, for example, adding a header and footer, some styles to the
default.css file, and an application-specific script file. Let’s call this new script SnapMeApp.js.

Introducing new practices for application development
In the previous chapters, you didn’t pay much attention to the state of the application. All of the
 exercises you did, in fact, essentially concerned stateless applications. Nearly any application does
have a state that is updated as the user works with the application. The state needs to be saved to a
permanent store when the application is suspended. In this way, you can easily restore it when the
 application is resumed or re-launched thus giving the user a nice feeling of continuity.

With this goal in mind, you add the following code to the newly created SnapMeApp.js file:

var SnapMeApp = SnapMeApp || {};

var SnapMeState = WinJS.Class.define(function () {

 var that = {};

 that.currentViewState = SnapMeApp.getViewStateForDisplay();

 that.total = 0;

 return that;

});

SnapMeApp.init = function () {

 SnapMeApp.Current = new SnapMeState();

 var buttonCounter = document.getElementById("buttonCounter");

 buttonCounter.addEventListener("click", SnapMeApp.add);

 SnapMeApp.refresh();

}

The sample application you’re going to build will just contain a button that increments a counter
variable when clicked. The SnapMeState is a class that describes the state of the application. The
property total in the class counts the number of clicks. The property currentState contains a message
referring to the current view state of the application.

 CHAPTER 8 States of a Windows 8 application 183

In the SnapMeApp.init function, you initialize the application’s state and register a handler for
the click event of the button. You also register the SnapMeApp.init function to be invoked when the
 application is ready. You need the following code in default.js:

app.onready = function (args) {

 SnapMeApp.init();

};

This is the markup you need to have in the body of the default.html page, placed in between the
header and footer pages:

<h1>My App</h1>

<h2 id="currentViewState"></h2>

<hr />

<button id="buttonCounter">Counter</button>

<h3 id="total"></h3>

Another new concept to practice with is the separation between state, behavior, and the logic
that updates the user interface. You add the following code to express the behavior associated with
 clicking the button. This code goes at the bottom of the SnapMeApp.js file:

SnapMeApp.add = function () {

 // This is part of the application's behavior

 SnapMeApp.Current.total++;

 // This updates the user interface

 SnapMeApp.refresh();

}

Finally, you add the following code for refreshing the user interface:

SnapMeApp.refresh = function () {

 // Update the label with the current view state

 var stateElem = document.getElementById("currentViewState");

 stateElem.innerHTML = SnapMeApp.Current.currentViewState;

 // Update the label with the total number of clicks

 var totalElem = document.getElementById("total");

 totalElem.innerHTML = SnapMeApp.Current.total;

}

With the SnapMeApp.refresh function in place, you don’t need to retrieve information from
 controls before updating the user interface. Likewise, you don’t need to refresh the user interface
directly from the code that handles events on visual elements. In this way, the entire code is cleaner
and easier to develop and improve.

184 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Detecting view state changes
The next step is adding more to the SnapMe application to make it capable of detecting view state
change and reacting accordingly. For now, you will only record the new view state and display it to
the user via the currentViewState label.

Any Windows Store application written using JavaScript and HTML receives notification of view
state changes via the onresize event on the window object. The event is fired whenever the window
that hosts the application is resized. In Windows 8, this can only happen when the device is rotated
and the orientation changes or one application is snapped or unsnapped. To receive the onresize
event, you need to register a handler. The best place to do so is the SnapMeApp.init function. Here’s
the final version of the function’s code:

SnapMeApp.init = function () {

 window.onresize = addEventListener('resize', SnapMeApp.onResize, false);

 SnapMeApp.Current = new SnapMeState();

 var buttonCounter = document.getElementById("buttonCounter");

 buttonCounter.addEventListener("click", SnapMeApp.add);

 SnapMeApp.refresh();

}

Subsequently, you also need to add a new SnapMeApp.onResize function at the bottom of the
SnapMeApp.js file.

SnapMeApp.onResize = function (e) {

 // Detect the current view state and saves it as a string

 SnapMeApp.Current.currentViewState = SnapMeApp.getViewStateForDisplay();

 // Refresh the user interface

 SnapMeApp.refresh();

}

As mentioned, the current view state is returned as an integer by a system provided global object:
the Windows.UI.ViewManagement.ApplicationViewState enumeration. The enumeration counts four
possible values—one for each of the possible view states. Four readymade constants make it easy for
developers to make checks against a particular view state. The constants are as follows:

Windows.UI.ViewManagement.ApplicationViewState.snapped

Windows.UI.ViewManagement.ApplicationViewState.filled

Windows.UI.ViewManagement.ApplicationViewState.fullScreenLandscape

Windows.UI.ViewManagement.ApplicationViewState.fullScreenPortrait

The following code transforms the code that indicates a view state into a displayable text.
The following code also belongs to the SnapMeApp.js file.

 CHAPTER 8 States of a Windows 8 application 185

SnapMeApp.getViewStateForDisplay = function () {

 var viewState = Windows.UI.ViewManagement.ApplicationView.value;

 switch (viewState) {

 case Windows.UI.ViewManagement.ApplicationViewState.snapped:

 return "I'm snapped now!";

 case Windows.UI.ViewManagement.ApplicationViewState.filled:

 return "I'm filled now!";

 case Windows.UI.ViewManagement.ApplicationViewState.fullScreenLandscape:

 return "I'm full screen landscape now!";

 case Windows.UI.ViewManagement.ApplicationViewState.fullScreenPortrait:

 return "I'm full screen portrait now!";

 }

}

You’re now ready to compile the sample application. Figure 8-5 shows what you get: the
 application is initially launched in full-screen landscape mode. Note that on a device held in portrait
mode when the application is launched, you would get a different view state value—full-screen
 portrait.

FIGURE 8-5 The SnapMe application in landscape mode.

It is interesting to note that Microsoft Visual Studio has a simulator with built-in functions to
 experiment with orientation. Figure 8-6 shows how to change the orientation in the simulator to test
if the portrait mode is detected correctly by the SnapMe application.

186 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 8-6 The SnapMe application run within the Visual Studio simulator.

Finally, Figure 8-7 shows the user interface of the sample application when snapped to the left
edge of the screen.

FIGURE 8-7 The SnapMe application just snapped.

 CHAPTER 8 States of a Windows 8 application 187

Whenever the user clicks the button, the total property of the application’s state object is updated
and displayed through the user interface. What happens to the state when the application is snapped,
unsnapped, or the orientation changes?

Orientation and view change events do not affect the application’s state if the application is in the
foreground—whether full-screen, snapped, or filled. If the application is in the background, it doesn’t
receive any of these events.

Adapting the application’s content
So far, you haven’t really experienced the intricacies of having an application that has to support
 multiple resolutions. To bang against the problem, make the following changes to the default.html file:

<div style="width: 500px; background-color: red;">

 <h1>My App</h1>

 <h2 style="text-align: right" id="currentViewState"></h2>

 <hr />

 <button id="buttonCounter">Counter</button>

 <h3 id="total"></h3>

</div>

You just styled the main page in a slightly different manner. Now the entire user interface of the
page (expect header and footer) is wrapped in a square 500 pixels wide and painted red so that it is
more visible. In addition, the message about the current view state is now aligned to the right edge of
the user interface container. The width chosen for the containing box (500 pixels) is not coincidental:
any value significantly larger than 320 would work as well. Keep in mind that 320 pixels is the width of
the snapped area.

The application doesn’t experience any particular issues when run in filled, landscape, and portrait
mode. Note, though, that this is more of the exception than the rule. Filled, landscape, and portrait
modes still take the application to run in different resolutions and, more importantly, different aspect
ratios. However, when you snap the SnapMe application to the edge, you see what’s in Figure 8-8.

FIGURE 8-8 Some content is cut off in the snapped view.

188 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The label with the text “I’m snapped now!” is not visible anymore. This is because the window is
forced to a fixed width and the text—right-aligned after the last changes—doesn’t fit anymore in the
available space.

This example raises a few rendering problems that you can fully address only by giving your
 application an adaptive layout.

Towards an adaptive layout

When it comes to snapped and filled views, the bottom line is that users can snap any applications.
Your application can adapt to the snapped view, but it can’t prevent snapping from happening. If
the application is not designed with snapping in mind, then its area is forcedly resized and this might
cause some content to be cropped off, as in Figure 8-8.

General principles of snapped and filled views
Generally speaking, all Windows Store applications should abide by a few guidelines for snapped and
filled views. There might be scenarios and situations in which this is not entirely possible. However,
every effort should be put forth to work out a layout that seamlessly adapts to any size. Here are the
principles at the foundation of the snapped view in Windows 8.

Be aware of view changes
Any Windows Store application should always register a handler for the resize event of the host
window. This ensures that any application can properly react to any view changes that are reckoned
significant. In the previous exercise, you just checked this principle off.

parity of features across states
Ideally, you should have just one application that provides some uniform behavior across the possible
view states. Whenever possible, the application should expose 100 percent of its functionality regard-
less of the view state—whether snapped, filled, landscape, or portrait.

In practice, though, this principle isn’t the law and needs some elastic interpretation. What if your
application needs to display a large input form? What if the application displays large data items like
videos or photos? Both videos and photos can be shrunk to some extent, but the resulting quality
may or may not be ideal for the purposes of the application.

Unsnap with care
If parity of features is not something you can guarantee, then you should consider unsnapping the
application programmatically when the user selects one of the critical functions. As an example,
 consider a to-do list application.

 CHAPTER 8 States of a Windows 8 application 189

To comfortably create a new task, you probably want to use a larger section of the screen. At the
same time, you can probably comfortably list tasks in the 320 pixels of the snapped view. So when
the user pushes some “Add new task” button, you programmatically unsnap the application. To
practice with the unsnap functionality, add the following code to the SnapMeApp.add function in the
 SnapMeAdd.js file.

SnapMeApp.add = function () {

 SnapMeApp.Current.total++;

 var viewState = Windows.UI.ViewManagement.ApplicationViewState;

 if (SnapMeApp.Current.total >== 10 &&

 viewState === Windows.UI.ViewManagement.ApplicationViewState.snapped) {

 Windows.UI.ViewManagement.ApplicationView.tryUnsnap();

 }

 SnapMeApp.refresh();

}

In the example, when the counter reaches a threshold value of 10, the application will
 automatically unsnap if it is currently snapped. If you call the tryUnsnap function from within a
 non-snapped application, then the call results in a no-operation.

Use a proportional design
A proportional design refers to the idea that any content you display should be rendered using
sizes and measurements proportional to the width of the container element. Using a proportional
layout (also often referred to as liquid or fluid layout) automatically makes the application’s content
 potentially capable of adapting to any size.

In the context of a proportional layout, you won’t give, say, a DIV element a fixed width—as we’ve
done in the code behind Figure 8-8. In general, though, there’s no guarantee that any applications
can be given a fluid layout that renders well in a 320-pixel width.

In Windows Store applications, developers tend to employ a user interface that works by
 listing and flowing elements. The underlying framework encourages this by the means of ad hoc
 components such as ListView and SemanticZoom—components that you practiced with in the
 previous chapter. Any content displayed through any of these components has a great chance to
render nicely in a snapped view.

Let’s learn a bit more about fluid layouts.

Fluid layouts
The linchpin of fluid layouts is the ability of HTML elements (such as, images, containers, text) to
maintain their position and size relative to each other and the screen. In addition to proper resizing
and font scaling, another major issue of fluid layouts is how to manage excess space so that elements
can be allocated proportionately in the available area.

190 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

In Windows 8, you find excellent support for an approach that is becoming a ratified standard.
This approach is based on the concept of flexible boxes. You can read more about the background of
 flexible boxes here: http://bit.ly/SUM20b.

Flexible boxes
In Windows Store applications, you create a flexible box by giving a DIV element a particular set of
CSS styles. For a practical hands-on session, open the default.css file of the SnapMe project and add
the following text:

.flexible-container {

 display: -ms-flexbox;

 -ms-flex-direction: row;

 -ms-flex-align: start;

 -ms-flex-wrap: wrap;

 color: white;

 font-size: 2em;

 text-align: center;

 height: 400px;

 overflow: auto;

 margin-top: 10px;

}

#block1 {

 background: #43e000;

 padding: 10px;

 border: solid 2px #fff;

}

#block2 {

 background: #166aff;

 padding: 20px;

 border: solid 2px #fff;

}

#block3 {

 background: #43e000;

 padding: 20px;

 border: solid 2px #fff;

}

#block4 {

 background: #ababab;

 padding: 25px;

 border: solid 2px #fff;

}

#block5 {

 background: #ff6a00;

 padding: 10px;

 border: solid 2px #fff;

}

 CHAPTER 8 States of a Windows 8 application 191

Now go back to default.html and add the following markup that includes the elements to be styled
with the preceding style sheet classes:

<div id="flexBox" class="flexible-container">

 <div id="block1">Europe</div>

 <div id="block2">North America</div>

 <div id="block3">Australia</div>

 <div id="block4">Asia and Far East</div>

 <div id="block5">South America</div>

</div>

You have now a container—the DIV element named flexBox—that is capable of flowing its
 content—the five child elements named blockN—within any available space. The major benefit is that
no content will be cropped. In addition, child blocks will wrap and be aligned as specified by the
-ms-flex-XXX attributes of the flexible-container CSS class. The key style, however, is the -ms-flexbox
value assigned to the display attribute of the flexible-container CSS class: this is the attribute that
makes the content of a DIV element flow vertically or horizontally and according to other parameters.
Table 8-1 provides a quick summary of the options you have to further customize the rendering of
child elements in a flexible box.

TABLE 8-1 Styles supported by a flexible box

Style Description

-ms-flex-direction Indicates the orientation of all child elements within the flexible box. Possible values are:
row, column, row-reverse, and column-reverse. The default value is row. A value of row
indicates that child elements flow horizontally to fill up space. Elements are listed in the
order they are declared in the source code. A value of column, instead, makes elements
flow vertically. The reverse qualifier is used if you want to invert the order of elements
and proceed from the last to the first.

-ms-flex-align Indicates the alignment of child elements within the flexible box. The alignment is meant
to be vertical if the direction (ms-flex-direction style) is horizontal and horizontal if the
direction is vertical. Possible values are: start, end, center, and stretch (default). A value
of start aligns elements to the top (or left). A value of end aligns to the bottom (or right).
A value of center just centers elements, whereas a value of stretch gives all elements the
maximum width/height available.

-ms-flex-pack Indicates how excess space is distributed between child elements in the flexible box.
Possible values are: start, end, center, and justify (default). A value of start leaves any
space at the end of the row/column. A value of end leaves any space at the beginning of
the row/column. A value of center just centers elements, whereas a value of justify splits
the excess space between child elements.

-ms-flex-wrap Indicates whether child elements wrap onto multiple lines or columns based on the space
available in the object. Possible values are: none (default), wrap, and wrap-reverse. A
value of none indicates that each child element goes on a separate row/column. A value
of wrap, instead, forces the flexible box to accommodate child elements sequentially in
the order of declaration. A value of wrap-reverse, instead, flows elements in the reverse
order.

At this point, try compiling and running the application. You should get the output of Figure 8-9
when the application is filled.

192 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 8-9 The SnapMe application in filled mode.

As you can see, all blocks within the flexible container are listed horizontally and fit nicely into the
available space. If you display the application in full-screen landscape mode, the container will extend
for the entire width and excess space is allotted at the end of the row. This is due to the -ms-flex-align
setting of start.

Figure 8-10, instead, provides a view of the application when snapped to the left edge. The
 available space is now too small to fit multiple blocks on the same row. The result is that elements
flow vertically. Should you have an element too large to fit the 320 pixel size, then you have two
 options: accept the excess content to be cropped or make the flexible container scrollable. You can do
that by adding the following style to the flexible container.

.flexible-container {

 overflow: scroll;

 ...

}

Note that this setting was already included in the code you added to the default.css file earlier in
the exercise.

 CHAPTER 8 States of a Windows 8 application 193

FIGURE 8-10 The SnapMe application in snapped mode.

Finally, Figure 8-11 provides a glimpse of the flexible container in full-screen portrait mode.

FIGURE 8-11 The SnapMe application in full-screen portrait mode.

194 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

CSS media queries
A flexible container is quite powerful and it is the core CSS technology that components specific to
Windows 8 are based on, such as GridView, ListView, and SemanticZoom. Suppose now you increase
the font size for all child elements. You can easily do that by opening the default.css file and making
the following change in the flexible-container class.

.flexible-container {

 font-size: 3em; // former value was 2em

 ...

}

You may not experience particular problems except when the application is snapped (see Figure 8-12).

FIGURE 8-12 A larger font forces the use of scrollbars in snapped mode.

The use of scrollbars is necessary to make excess content visible. Is there a way to automatically
adjust some CSS styles when the application goes in snapped mode? You bet; this is precisely the
purpose of CSS media queries. You briefly touched on CSS media queries in Chapter 3, “Making sense
of CSS.”

A CSS media query is a query expressed on some run-time conditions that instruct the browser
to pick up a particular CSS file. You can define a media query using a LINK element (as discussed
in Chapter 3) or by directly embedding it in the CSS file. This is the standard approach followed by
 Windows Store applications.

Every time a new project is created, the default.css file contains the following CSS code:

@media screen and (-ms-view-state: fullscreen-landscape) {

}

@media screen and (-ms-view-state: filled) {

 CHAPTER 8 States of a Windows 8 application 195

}

@media screen and (-ms-view-state: snapped) {

}

@media screen and (-ms-view-state: fullscreen-portrait) {

}

These are just predefined media queries for the four view states of a Windows Store application.
All you need to do is add CSS settings that you want to be applied to each particular view state. For
example, to shrink the font size only when the application is snapped, you enter the following code to
default.css:

@media screen and (-ms-view-state: snapped) {

 .flexible-container {

 font-size: 2em;

 }

}

You basically overwrite any existing styles with the values that apply in the specific scenario. You
don’t need to completely rewrite the style; you just indicate what’s different.

CSS media queries vs. resize events
In the course of this chapter, you have learned two techniques to deal with view changes—detecting
resize events and CSS media queries. What’s the difference and when should each be used?

CSS media queries are managed by the host browser and are limited to applying a different CSS
style sheet to the application. If all you need is to change font sizes, adjust some fixed widths or
heights you may still have, or fix margins and padding, then using CSS media queries is just fine and
effective. Moreover, media queries also allow you to hide elements and move them around.

There might be situations, instead, where you can’t just fix the application’s layout with the sole use
of CSS. A common example is when you use a ListView component to list items. In a view mode that
is large enough, it is convenient opting for a multicolumn layout. When the application is snapped,
instead, it is advisable that you switch to a single column layout. Because the ListView is a Windows 8
component, you need some JavaScript code to switch its layout accordingly. This can’t be done from
within a CSS file; an event handler is then the only possible approach. By using events, you can also
programmatically replace all (or in part) the layout of the application by selecting a different layout
for each significant view state. (You’ll have an exercise that addresses this in just a moment.)

Important The bottom line is that CSS media queries should be your first option; and you
should turn to events if CSS media queries are not enough. Having said that, though, it’s
really hard to find a non-toy application that can manage view states without resorting
(at some point) to events.

196 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Adjusting the video application
In Chapter 7, “Navigating through multimedia content,” you created a video application. A listview
allowed users to select a YouTube video which was then played through an IFRAME element. The
application was written while blissfully ignoring view states; and the behavior of the application with
respect to view states is poor, as Figure 8-13 shows.

FIGURE 8-13 The Video application of Chapter 7 cuts off video when filled or snapped.

When filled, the application cuts off a significant part of its user interface—the video player. You
can easily figure out that in portrait and snapped mode, where the width of the screen is smaller,
things can only go worse. Some changes are in order to make the Video application integrate well
with the surrounding environment.

The user interface is made of two main elements—the listview to pick up a video and the player.
The first thing you might to do is put both in a flexible container. Second, you might want to get rid
of most of the fixed-size values introduced in the last chapter. Basically, you only need to indicate an
explicit width or height in the following cases:

■■ Define the height of the listview where the user selects the video to play.

■■ Define the width of the listview items so that they show up nicely in snapped mode.

■■ Define the expected size of the video player.

So open the default.css file; skip classes defined for body, header, footer, and title; and then wipe
out everything else. Next, add the following:

.flexible-container {

 display:-ms-flexbox;

 border: solid 1px #fff;

 -ms-flex-pack: center;

 -ms-flex-wrap: wrap;

}

 CHAPTER 8 States of a Windows 8 application 197

/* Template for headers in the zoomed-in ListView */

.header-title {

 padding: 8px;

}

/* Template for items in the zoomed-in ListView */

.zoomed-in-item-container {

 overflow: hidden;

 display: -ms-grid;

}

.zoomed-in-item-container img {

 -ms-grid-column: 1;

}

.zoomed-in-item-container div {

 -ms-grid-column: 2;

}

/* Template for items in the zoomed-out ListView */

.zoomed-out-item-container {

 background-color: #00f;

 padding: 8px;

 text-align: center;

 width: 320px;

}

.zoomed-out-item-container h1 {

 color: #fff;

 font-size: 3em;

}

/* CSS for the zoomed-in/out ListView(s) */

#listview-in {

}

#listview-out {

}

/* Overall container */

#semantic-zoom-container {

 height: 240px;

 width: 100%;

 border-top: solid 2px #31cfd4;

 border-bottom: solid 2px #31cfd4;

 background: -ms-radial-gradient(center, ellipse cover, #c5deea 0%,#8abbd7

31%,#066dab 100%);

}

/* Video player */

#player-container {

198 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 height: 338px;

 width: 450px;

 border: solid 1px #111;

 background: -ms-linear-gradient(left, #111 0%,#444 50%,#444 51%,#111 100%);

}

As you can see, the listview is set to 240 pixels of height and items are 320 pixels wide, which it is
good to have just one item show up per row in snapped mode. Now open up default.html and fix the
markup as follows. Remove the entire TABLE element you find next to the H1 element with the page
title. Replace it with the following markup:

<div class="flexible-container">

 <div id="semantic-zoom-container"

 data-win-control="WinJS.UI.SemanticZoom"

 data-win-options="{initiallyZoomedOut: true}">

 <!-- The zoomed-in view. -->

 <div id="listview-in"

 data-win-options ="{layout: {type: WinJS.UI.GridLayout}}"

 data-win-control="WinJS.UI.ListView"></div>

 <!--- The zoomed-out view. -->

 <div id="listview-out"

 data-win-options ="{layout: {type: WinJS.UI.GridLayout}}"

 data-win-control="WinJS.UI.ListView"></div>

 </div>

 <div id="player-container">

 <iframe id="player" height="100%" width="100%" type="text/html"></iframe>

 </div>

</div>

Finally, open up Videos.js and add the following line to the VideosApp.init function:

// Register handler for resize events

window.onresize = addEventListener('resize', VideosApp.onResize, false);

The extra line will register a handler for the resize event. By handling this event, you can switch the
layout of both listviews of the semantic zoom component to the list layout when the application is
snapped. Here’s the code for the VideosApp.onResize function:

VideosApp.onResize = function (e) {

 var detailView = document.getElementById("listview-in").winControl;

 var masterView = document.getElementById("listview-out").winControl;

 var viewState = Windows.UI.ViewManagement.ApplicationView.value;

 switch (viewState) {

 CHAPTER 8 States of a Windows 8 application 199

 case Windows.UI.ViewManagement.ApplicationViewState.snapped:

 detailView.layout = new WinJS.UI.ListLayout();

 masterView.layout = new WinJS.UI.ListLayout();

 break;

 case Windows.UI.ViewManagement.ApplicationViewState.filled:

 case Windows.UI.ViewManagement.ApplicationViewState.fullScreenLandscape:

 case Windows.UI.ViewManagement.ApplicationViewState.fullScreenPortrait:

 detailView.layout = new WinJS.UI.GridLayout();

 masterView.layout = new WinJS.UI.GridLayout();

 break;

 }

}

The grid layout gives components a multicolumn layout where items are displayed vertically up
until the bottom is reached and they then wrap to the next column. In snapped mode, when the
horizontal space is limited, you are better off choosing a list layout where a single column is created.
Figure 8-14 shows the new look-and-feel of the Video application. In this way, the Video application is
fully usable regardless of the view state.

FIGURE 8-14 The new Video application in snapped and filled modes.

Early on, you set the width of the video player to over 400 pixels. As you can see in Figure 8-14,
when the application is snapped the player is still entirely visible. This is the effect of one more
changes: adding a media query for the snapped state.

@media screen and (-ms-view-state: snapped) {

 #player-container {

 height: 225px;

 width: 300px;

 }

}

200 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The media query selects a smaller size for the player when the application is snapped to a screen
edge.

Note In this chapter, you practiced only with applications made of a single page. However,
it should be noted that considerations on view states apply to any page you may have in
the application.

Summary

Windows Store applications can be viewed in four different modes—full-screen, landscape, and
 portrait, as well as filled or snapped. In the latter cases, the application is sharing the screen with
a second application. This means that you should be thinking of the layout of your application for
at least four different scenarios and aiming to make your application fully functional even within a
container as small as 320 x 760 pixels. At the same time, Windows 8 applications will also likely be
consumed on very large screens.

Therefore, it is key for developers to opt at the beginning for a layout that is easily extensible. If a
single flexible layout is not possible, then you should plan for having multiple different layouts and
programmatically switch between them as resize events are detected.

Snapped applications are a very interesting case, as it happens when the application is forced to a
sliver of the screen that is only 320 pixels wide. Guidelines of good Windows Store programming say
that you should aim at reaching parity for features across view states. However, this is more a vector
that points you to the right direction than a mandatory requirement. Users reasonably expect to be
able to snap any applications; but not all applications can reasonably be fully functional with only
320 pixels of horizontal resolution. If this is the case, however, you should be ready to offer an
 alternate layout and unsnap programmatically as users hit a function that requires the full screen.

In this chapter, you learned about snapped and filled applications, and experimented with the
code and styles that make it easy to create Windows Store applications that behave as good citizens
of the Windows 8 world.

 201

Chapter 9

Integrating with the
Windows 8 environment

 The heart has its reasons which reason knows nothing of.
—Blaise Pascal

Operating systems owe their acceptance and circulation mostly to successful applications. There
are many ways to measure the success of an application. From the viewpoint of users, though, a

 successful application is often simply an application that allows the user to perform a common task in
a seamless and comfortable way.

Consider a basic application that needs to save some text to a disk file. The primary goal of the
 application is getting and then saving the text. However, to save the text users probably need to
choose a file name and a location on disk. These are ancillary tasks; necessary for the sake of the
 application but beyond the primary goal of the application. As a developer, you should allocate time
to code these tasks too.

How would you code these accessory tasks, such as picking a file from disk? Without rules, each
application could come up with its own user interface. This is nefarious for users, who potentially face
a myriad of different interfaces; but it is also nefarious for developers, who have to write extra code
each and every time.

In this chapter, you will learn about contracts and practice with them. Contracts are specific
 services for common tasks that applications can consume and expose for other applications to
 consume. The ultimate goal of contracts is having more and more applications doing the same things
in the same way.

http://www.quotationspage.com/quote/27616.html

202 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Contracts and common tasks

Microsoft Windows 8 is an operating system that imposes several constraints on applications. In
particular, applications are isolated from each other. How can applications communicate with one
another under these conditions? Contracts are the answer.

A contract defines a system-wide protocol for applications developed by different companies to
communicate and exchange data. A contract refers to a particular common task, such as sharing data,
searching for data, picking files, defining settings, and more. Applications that need that particular
behavior can rely on existing implementations of that contract instead of coding their own. At the
same time, applications may expose themselves to a given contract so that other applications can
consume it.

Aspects of Windows 8 contracts
There are three aspects of a contract that deserve a bit more attention: how to discover available
services, how to consume services, and how to expose services.

The Charms bar
In Windows 8, the Charms bar is a system’s toolbar that users can access at any time, regardless of the
application that is currently active. The Charms bar slides in from the right edge of the screen as soon
as you point the mouse to the top/right or bottom/right corner of the screen. You can also display the
bar by pressing Windows+C on your keyboard. Finally, on touch-enabled devices, you invoke the bar
by swiping from the side. The Charms bar is shown in Figure 9-1.

FIGURE 9-1 The Charms bar in action.

 CHAPTER 9 Integrating with the Windows 8 environment 203

The Charms bar counts five elements: Search, Share, Settings, Start, and Devices. The first three
are the most interesting from the perspective of contracts. In fact, Search, Share and Settings are
three of the basic contracts that most Windows Store applications should at least seriously consider.

An application that wants to share some of its content with other applications (and in turn with
other users) implements the Share contract. Users of the Windows 8 operating system know that
there’s a standard way for them to share any content the current application may have—the Share
button on the Charms bar. By implementing the Share contract, an application can push its selected
content to any of the applications enlisted in the Share section of the Charms bar.

Likewise, an application that allows users to search for some content (such as, a cooking
 application that supports searching for a particular recipe) doesn’t need to incorporate an ad hoc
user interface for the search bar. Users know that the standard way for them to search for content
is through the Charms bar. So an application that supports the Search contract can have its content
searched every time the user uses the Search panel in the Charms bar.

Finally, the Settings button brings up the settings page of the current application. By implementing
the Settings contract, the application can bring its own menu and set of options in the Settings panel
in much the same way Microsoft Internet Explorer does in the screenshot of Figure 9-2.

FIGURE 9-2 The Settings panel of Internet Explorer.

Search, Share, and Settings are just the principal contracts available in Windows 8. A few other
contracts are available, as you’ll see in the rest of the chapter.

204 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Consuming and publishing services
There are two ways for a Windows Store application to deal with contracts—to consume a service and
to publish a service. In terms of coding, the first scenario is far easier to code since it just entails using
a readymade set of Windows 8 components. The second scenario is only a bit harder to code since it
requires that the application complies by the rules set in the definition of the contract.

A to-do list application may implement the Share contract as a source to enable users to share
some of their tasks with friends. The user will invoke the Charms bar and pick up, say, the Mail
 application from the Share panel. The Mail application will then receive the content as exposed by the
TodoList application and uses that to prepare an email message.

At the same time, your application may act as the receiver of information that another application
may decide to share. Suppose you have an application that posts to the user’s Facebook account.
By making the application implement the Share contract as a target, you enable users of other
 applications to send their shared content to yours. So for example users of the TodoList application
can now post their task directly to their Facebook account.

What makes contracts particularly attractive is that Windows Store applications may in the end
result from the composition of functionality picked from different applications. Each application is
then simpler and quicker to write.

Contracts and extensions
In this chapter, you’ll go through a few exercises that involve the most commonly used contracts. The
purpose of this section, instead, is to give you a quick overview of the available contracts so that you
know where to look when you need to implement or consume a particular service.

Supported contracts
Table 9-1 lists and describes the contracts that Windows Store applications may support. As you can
see, some of the contracts so far referenced under a single name (such as, Share) are actually available
for coding in two or more flavors (such as, Share source and Share target).

TABLE 9-1 Contracts available for Windows Store applications

Contract Description

Share source The application implements this contract to share some of its content with any registered
applications that support the Share target contract. Target applications appear in the
Share menu of the Charms bar. For example, the default Weather application in
Windows 8 is enabled to share forecasts.

Share target The application implements this contract to be listed in the Charms bar as an application
which can receive any data the current application can share. For example, the default
Mail application acts as a Share target.

File open/Save picker The application implements this contract to expose its own view of files and relevant
folders. This contract entails providing a custom user interface for the user to pick a file
or folder.

 CHAPTER 9 Integrating with the Windows 8 environment 205

Contract Description

Settings The application implements this contract to let users access customizable application
settings that affect the way in which users interact with the application. Windows 8
 requires that applications expose settings in a standard way that passes through the
implementation of the Settings contract.

Search The application implements this contract to let user search within any content
 application-specific content that may be available.

Play to The application implements this contract to enable users to easily stream audio, video, or
images from their computer to any connected devices in their home network (such as, a
large TV screen).

Cache updater The application implements this contract if it is providing customized access to files and
folders (via the File picker provider contract) and needs to notify applications of detected
changes to listed files and folders.

As you can see, not all of the supported contracts make sense for just any Windows Store
 application. For example, Share and Settings contracts are much more common than the Play to
 contract or the Cache updater. Yet, the Windows 8 framework does provide a large offering of
 customizable aspects that is not even limited to contracts.

extensions
While contracts are about agreements set between applications, extensions relate to agreements
set between an application and the Windows operating system. By registering an extension, the
 application intends to extend or customize one or more standard Windows features such as, for
example, the way in which files with a given extension (such as, TXT files) are managed within the
operating system. Table 9-2 lists extensions available in Windows 8.

TABLE 9-2 Extensions available for Windows Store applications

Extension Description

Account picture provider The application provides this extension to be listed in the Account Picture Settings
 control panel as an application which can provide a picture for the user account.

AutoPlay provider The application provides this extension to be listed as an AutoPlay choice for the one or
more AutoPlay events. Windows fires the AutoPlay event whenever the user connects a
device to the computer.

Background task provider The application provides this extension if it needs to do some work in the background
when the application is suspended. Background tasks are intended to be small work
items that require no interaction with the user.

Camera settings provider The application provides this extension if it can provide a custom user interface for
 selecting camera options and choosing effects when a camera is used to capture a
photo or video.

Contact provider The application provides this extension to be included in the list of applications that
Windows displays whenever the user needs to pick a contact.

File activation provider The application provides this extension if it intends to register as the handler of files
with a given extension.

Print settings provider The application provides this extension if it can provide a custom user interface for
 selecting printer options.

206 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Implementing contracts and extensions requires writing code following strict rules and making
some changes to the application’s manifest file. The purpose of the second requirement is informing
Windows about the system-wide changes that the application may introduce.

Consuming the File picker contract

Nearly any application needs to save data to the user’s disk. When it comes to this, nearly any
 application needs to be able to create and open files in folders. Sometimes the application can use
files and folders with fixed names and disk locations; sometimes, instead, it is preferable that the user
has the final word on the name of a given file and the location of the containing folder.

How would you let a user to choose a file name and a disk location?

This is precisely the purpose of the File picker contract. If you are familiar with earlier versions of
Windows, the concept behind file pickers should be nothing new: the File picker contract is just the
programming artifact necessary to implement a common dialog box, such as the one in Figure 9-3.

FIGURE 9-3 The File picker counterpart in Windows 7 and Windows 8 Desktop.

Let’s extend the TodoList application you developed in Chapter 6 to consume file pickers and let
users choose a file and location where to save the task. You won’t be dealing yet with the physical
details of how to create a file. You limit picking a file in this chapter and complete the exercise with
file and folder creation in the next chapter.

 CHAPTER 9 Integrating with the Windows 8 environment 207

Choosing a file to save data
You start the exercise by making a copy of the TodoList project from Chapter 6, “The user interface of
Windows Store applications,” in a new folder of your choice. Before you go any further with contracts,
it is advisable that you make some little changes to the existing code to improve the application.

preliminary changes to the TodoList application
First thing, you define an HTML layout for the summary fly out displayed to the user before attempting to
save. Open the default.html file and replace the content of the DIV element with the ID of flyoutSummary.
Here’s the new content:

<div data-win-control="WinJS.UI.Flyout" id="flyoutSummary">

 <div class="tableLabel">DESCRIPTION:</div>

 <div class="tableValue"></div>

 <div style="clear:both" />

 <div class="tableLabel">DUE DATE:</div>

 <div class="tableValue">

 </div>

 <div style="clear:both" />

 <div class="tableLabel">PRIORITY:</div>

 <div class="tableValue"></div>

 <div style="clear:both" />

 <div class="tableLabel">STATUS:</div>

 <div class="tableValue"></div>

 <div style="clear:both" />

 <div class="tableLabel">COMPLETED:</div>

 <div class="tableValue"></div>

 <div style="clear:both" />

<hr />

 <button onclick="TodoList.pickFileAndSaveTask()">It's OK. Please save!</button>

</div>

As you can see, the markup now contains a button for the user to click to trigger the save process.
The markup being used also contains a couple of new CSS styles that must be added to the todolist.
css files you have in the project.

.tableLabel {

 float: left;

 width: 100px;

 text-align: right;

 font-weight: 600;

}

.tableValue {

 float: left;

 font-weight: 400;

 margin-left: 10px;

}

208 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Finally, you open todolist.js and modify the content of the displaySummary function as shown
below:

TodoList.displaySummary = function (task) {

 // Prepare the content for the flyout

 var bindableElement = document.getElementById("flyoutSummary");

 WinJS.Binding.processAll(bindableElement, task);

 // Display the flyout

 var anchor = document.getElementById("buttonAddTask");

 var flyoutSummary = document.getElementById("flyoutSummary").winControl;

 flyoutSummary.show(anchor);

}

You learned the basics of Windows 8 data binding back in Chapters 5 and 6. In this chapter, you
face a new requirement: formatting the content of data for display purposes. The task you’re creating
through the TodoList application has a due date; in the summary, you might want to show the date
as well as the rest of the content. You want, however, to display the date in a common format. The
default format you get, instead, is the ISO format of dates which is not really easy to read for humans.
You need a converter that preprocesses the date just before display. In the markup for the flyout you
entered earlier, you find code like below:

The SPAN element is being bound to the dueDate property of the Task object; but the real content
is massaged by the TodoList.dateForDisplay function. This function must be added to the todolist.js
file.

// Converter to date display in the flyout

TodoList.dateForDisplay = WinJS.Binding.converter(function (value) {

 return value.toLocaleDateString();

});

Finally, you add the code that serves as the placeholder for file picking functionality. This code is
invoked when the user clicks on the button now displayed in the flyout to start the save process. Add
this code at the bottom of the todolist.js file.

TodoList.pickFileAndSaveTask = function () {

 // Get the task object to save

 var currentTask = TodoList.getTaskFromUI();

 // Placeholder for more interesting things

 TodoList.alert("Ready to pick a file and save...");

}

 CHAPTER 9 Integrating with the Windows 8 environment 209

Figure 9-4 shows the new look and feel of the summary displayed to the user when the task is
ready for storing.

FIGURE 9-4 The summary flyout as modified in this chapter.

Unsnap before you pick
Once the user clicks the button in Figure 9-4, the application should let her pick up a file where
the task will be saved. This entails consuming the File picker contract as it is implemented by the
 operating system. Windows 8 provides its own version of the dialog box shown in Figure 9-3. The
Windows Store counterpart of the familiar file Open/Save dialog box is just a component that exposes
the File picker contract.

At this stage, you don’t need yet to get acquainted with the nitty-gritty details of contracts, as
the details of the File picker contract are buried in the folds of a few new high-level components and
functions. These components and functions are the only ones you need to get familiar with.

A key rule you need to cope with is that a Windows Store application is not allowed to invoke a
file picker if it is in a snapped state. Because of this, you should add the following code at the very
 beginning of the TodoList.pickFileAndSaveTask function in the todolist.js file.

var currentState = Windows.UI.ViewManagement.ApplicationView.value;

if (currentState === Windows.UI.ViewManagement.ApplicationViewState.snapped &&

 !Windows.UI.ViewManagement.ApplicationView.tryUnsnap()) {

 // Fail silently if you can't unsnap the app

 return;

}

210 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

If the application is not in a snapped state, then you are ready to invoke the system’s picker for
saving a file.

Dealing with the default File save picker
Windows 8 provides two distinct components whether you need to pick the file to save or read some
content. You use the Windows.Storage.Pickers.FileOpenPicker object if your goal is picking an existing
file for reading its content. You use the Windows.Storage.Pickers.FileSavePicker object, instead, if
you intend to create a new file or override an existing one. To save the task, you opt for the second
 option. This is the code you need to have in the TodoList.pickFileAndSaveTask function within the
todolist.js file.

TodoList.pickFileAndSaveTask = function () {

 // Code to check if in snapped state

 ...

 // Get the task object to save

 var currentTask = TodoList.getTaskFromUI();

 // Create the picker object and set options

 var savePicker = new Windows.Storage.Pickers.FileSavePicker();

 savePicker.commitButtonText = "Create task";

 savePicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.

computerFolder;

 savePicker.suggestedFileName = currentTask.description;

 savePicker.fileTypeChoices.insert("TodoList Task", [".todo"]);

 // More code will go here

 ...

}

This code is not sufficient yet to display the user interface for picking up files. It lacks the specific
instruction that pops up the standard user interface. Let’s spend a few moments understanding the
role of the properties involved in the code above.

preferred settings
You should notice that the SuggestedStartLocation property is set to an expression that indicates the
Computer folder as the starting location of the search. As the property name seeks to indicate, that
is not necessarily going to be the real start location for the file picker. In an attempt to give users a
continuous feel, the file picker tracks the last folder visited and starts from there. Should the folder
be unavailable (such as, the folder has been deleted) or unreachable (such as, you are disconnected
from the network), then the picker will take the suggestion. The suggestion is also taken if there’s no
 current record on track about the last folder visited.

http://msdn.microsoft.com/it-it/library/windows/apps/windows.storage.pickers.fileopenpicker.suggestedstartlocation

 CHAPTER 9 Integrating with the Windows 8 environment 211

Note also that developers are not entitled to suggest programmatically any start folder not listed
in the PickerLocationId enumeration. By design, only the predefined system folders can be presented
to the user. The PickerLocationId enumeration includes the folders listed in Table 9-3.

TABLE 9-3 Predefined system folders

Location Description

computerFolder The folder that provides access to all disks and connected devices.

desktop The Windows desktop.

documentsLibrary The user’s Documents folder.

downloads The folder where software is downloaded by default.

homeGroup The folder that provides access to all computers in the home group.

musicLibrary The Music library folder.

picturesLibrary The Pictures library folder.

videosLibrary The Videos library folder.

Similarly, you can suggest the name for the file to be saved. You do that through the Suggested-
FileName property. In the example above, you set the suggested file name to the description of the
task being created:

savePicker.suggestedFileName = currentTask.description;

Another parameter you can customize is the list of extensions recommended for the file being
 created. In this case, you provide the .todo custom extension:

savePicker.fileTypeChoices.insert("TodoList Task", [".todo"]);

The commitButtonText property sets the caption of the button the user will need to click to save
content.

Getting the name of the file to create
To display the user interface through which the user will be able to select a file to save, you need to
add the following code to the body of the TodoList.pickFileAndSaveTask function.

// Invoke the file picker

savePicker.pickSaveFileAsync().then(function (file) {

 if (file) {

 TodoList.alert(file.name);

 }

});

212 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The method pickSaveFileAsync displays the user interface and returns only once the user has
 dismissed the dialog or has selected a file. The method runs asynchronously; this means that you
need to use the then method to specify any behavior you want to run after the file has been selected.

The File save picker returns a file parameter that refers to the name of the file being created.
If the file argument is null, then the user has dismissed the picker; otherwise, the user has successfully
selected a file. The next step of this exercise consists of displaying some properties of the file. In the
next chapter, you’ll learn how to create and read files. Figure 9-5 shows the user interface of the file
picker about to create a new file in an empty folder.

FIGURE 9-5 The TodoList application ready to create a new file in the Todo List custom folder.

The object you receive from the file picker is a StorageFile object. To get its name, you can invoke
the name property. You can also invoke the displayName property if you want to get rid of the
 associated extension. Figure 9-6 shows a message box with the name of the created file.

 CHAPTER 9 Integrating with the Windows 8 environment 213

FIGURE 9-6 Getting the name of the selected file.

You don’t need to take any special care to get the name of a file or its file type. Three properties
are available: name, displayName, and fileType. If you need to read some additional file properties
(such as, size or date), then you need a call to getBasicPropertiesAsync, as shown below:

savePicker.pickSaveFileAsync().then(function (file) {

 if (file) {

 file.getBasicPropertiesAsync().then(function (basicProperties) {

 TodoList.alert(file.name + "(" + basicProperties.size + " bytes)");

 });

 }

});

File properties are split in three groups: built-in, basic, and extended. Built-in properties are name
and file type, and they are retrieved along with the file content. Basic properties include size and
dateModified; basic properties must be retrieved via a call to getBasicPropertiesAsync. Extra properties
must be accessed via a preliminary call to retrievePropertiesAsync. Here’s an example:

file

 .properties

 .retrievePropertiesAsync([fileOwnerProperty, dateAccessedProperty])

 .done(function (extraProperties) {

 TodoList.alert(extraProperties[dateAccessedProperty]);

 }

Typical properties you retrieve in this way are fileOwner and dateAccessed.

214 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Choosing a file to load data
Once you have some files saved to disk, at some point you need to read them back. Before you can
read their content, however, you need to pick them up from storage. For this purpose, you need a
File open picker component. As mentioned, any application can serve as a File open picker as long as
it implements the File open picker contract. Most of the time, however, you will be dealing with the
system default File open picker rather than offering your own picker to other applications. Here’s how
you deal with the default File open picker.

Dealing with the File open picker
The File open picker is an instance of the FileOpenPicker component. Much like the companion
 FileSavePicker component, it also offers a suggestedStartLocation property for you to suggest a
 preferred location where the user should start searching for a file. The following code shows how you
set up a file picker to select an image file:

var openPicker = new Windows.Storage.Pickers.FileOpenPicker();

openPicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.

picturesLibrary;

openPicker.fileTypeFilter.replaceAll([".png", ".jpg", ".jpeg"]);

The replaceAll function indicates the files you are interested in viewing in the list to select. The list
of accepted file extensions is passed in as an array. You can also set a view mode and specify that you
want file items to be represented with thumbnails.

openPicker.viewMode = Windows.Storage.Pickers.PickerViewMode.thumbnail;

Finally, you use the pickSingleFileAsync function to display the picker’s user interface and show the
user the name of the selected file:

openPicker.pickSingleFileAsync().then(function (file) {

 if (file) {

 TodoList.alert("You picked: " + file.name);

 }

});

Figure 9-7 shows the user interface of the File open picker component. It displays the content
of the Pictures library on the current computer. As the user clicks the Pictures link to see more
locations to search for files, a drop-down menu unfolds. The menu contains the default locations
of a Windows 8 machine plus all registered custom file pickers.

By default, you find a custom picker for Photos, one for taking pictures right from the webcam.
Finally, you find the SkyDrive component that allows you to pick up a file from the cloud. All of these
are ad hoc file pickers that implement the aforementioned File open picker contract.

 CHAPTER 9 Integrating with the Windows 8 environment 215

FIGURE 9-7 The File open picker component in action.

Multiple selections
The previous example only allows users to select a single file. To enable multiple selections, you just
change the function that triggers the user interface. Here’s how:

openPicker.pickMultipleFilesAsync().then(function (files) {

 if (files.size > 0) {

 var buffer = "You picked:\n";

 for (var i = 0; i < files.size; i++) {

 buffer = outputString + files[i].name + "\n";

 }

 TodoList.alert(buffer);

 } else {

 // The user dismissed the picker without selecting any files.

 }

});

The pickMultipleFilesAsync function passes to the next callback—the code you pass to function
then—the list of files that the user may have selected. You can gain access to all files by running a
loop over the list.

Note that the application has read/write access to any files referenced by the file open/save pickers.

216 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Selecting a folder
Another common scenario is when your application just needs users to select a folder; not a file.
 Windows 8 has a handy object for the purpose—the FolderPicker object. You use this object in much
the same way you use other pickers.

// Create the picker object and set options

var folderPicker = new Windows.Storage.Pickers.FolderPicker();

folderPicker.fileTypeFilter.replaceAll(["*"]);

folderPicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.

desktop;

To display the user interface, you need the following code:

folderPicker.pickSingleFolderAsync().then(function (folder) {

 if (folder) {

 TodoList.alert(folder.name);

 }

});

Note that the application gains read/write access not just on the selected folder but also on all
subfolders.

The Share contract

If you’ve used Windows, you should know about the Windows clipboard. It’s a system feature that
allows users to copy data from one application (typically with Ctrl+C) and paste that into another
(typically with Ctrl+V). The clipboard does support a variety of formats—data can be copied as plain
text, rich text, and bitmap, but also application-specific formats are supported.

The clipboard is essentially a user-oriented feature, but it was backed by a programming interface
in all versions of Windows. Windows Store applications have no access to the clipboard, but that
doesn’t mean that distinct applications can’t communicate and exchange data. Instead of the
 clipboard, a user will just use the Share menu from the Charms bar.

publishing an application’s data
In this exercise, you’ll learn how to make some application-specific data potentially available to any
other applications registered to receive shared data. The exercise consists of extending the TodoList
application to make it act as a Share source application.

 CHAPTER 9 Integrating with the Windows 8 environment 217

Choosing the data format
To be a share source provider, your application doesn’t need to be written in a special way. It only
needs to use a set of ad hoc components, such as the DataPackage and the DataTransferManager
objects. The former defines the package with the data to share; the latter passes the package on to
requesting applications.

When it comes to sharing data, the primary aspect to consider is the format of the data, whether
plain text, HTML, or perhaps bitmaps. Ideally, the more formats you support, the more your
 application can share. In the end, though, the best choice is just supporting the formats that make the
most sense for the specific application. These formats are usually just one or two. Table 9-4 lists the
supported data formats.

TABLE 9-4 Supported formats for shared data

Data format Method Description

Plain text setText Shared data consists of a plain string of text.

URI setUri Shared data consists of a link to a URL that receivers may render
as a clickable item.

HTML setHtmlFormat Shared data consists of HTML markup including styles, script,
and images.

Rich text format setRtf Shared data consists of text formatted as RTF (such as, data you
get from Microsoft Word).

Bitmap setBitmap Shared data consists of an in-memory image.

Files setStorageItems Shared data consists of files.

The data package
The column Method in Table 9-4 just refers to the methods available on the DataPackage object that
allow sharing data in a particular format. Creating a valid data package is the primary responsibility of
the Share Source application. A DataPackage object can contain data in one or more of the formats
listed in Table 9-4. It is up to the requesting application to pick up data in the format that makes the
most sense.

For example, the default Windows 8 Mail application operates as a Share target. It can accept data
in a variety of formats and embeds data into the body of the email. If an application passes data as
plain text as well as HTML, the HTML format is picked up as the preferred format. You’ll experiment
with this behavior in a moment.

Adding share source capabilities to TodoList
As the first step on the way to sharing data with other applications, you should register a handler
within the application for the datarequested event. You do this as soon as possible in the application
lifecycle.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.aspx

218 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Handling requests for data
You open the todolist.js file and add the following code at the bottom of the TodoList.init method:

// Initialization of Share source contract

var clipboard = Windows.ApplicationModel.DataTransfer.DataTransferManager.

getForCurrentView();

clipboard.addEventListener("datarequested", function (e) {

 // Get the information to share

 var currentTask = TodoList.getTaskFromUI();

 // Share information as plain text

 TodoList.shareDataAsPlainText(e, currentTask);

 // Share information as HTML

 TodoList.shareDataAsHtml(e, currentTask);

});

The clipboard variable references the data transfer manager object active for the current window.
Data transfer manager is the system component responsible for transferring data in and out of your
application. You use the addEventListener method to register a handler for the datarequested event.
This event is fired whenever the user brings up the Share panel and there’s at least one application
ready to receive data.

Note Windows 8 doesn’t disable the Share button on the Charms bar if the current
 application doesn’t support the Share source contract. So the user can always try to share
content from within any application. However, if the DataTransferManager object detects
that the current application doesn’t expose a handler for the datarequested event, a
 message is shown like in Figure 9-8.

In the handler for the datarequested event, you collect the data to share, format the data in the
way you like and package data up in a DataPackage object. In the code snippet above, the data to
share is represented by the task being created. Task information is shared as plain text and HTML.
The order in which data is added to the package (plain text is added first in the previous code snippet)
is unimportant. The format shared actually depends on the settings of the receiver application.

 CHAPTER 9 Integrating with the Windows 8 environment 219

FIGURE 9-8 The user interface displayed when the user attempts to share content from an application that
doesn’t support the Share source contract.

Sharing data as plain text
Now you add the following new function to the bottom of the todolist.js file. The new function is
responsible for sharing the task information with other applications.

TodoList.shareDataAsPlainText = function (e, task) {

 var request = e.request;

 // Add data to the package

 request.data.properties.title = "TO DO";

 request.data.properties.description = task.description;

 request.data.setText(task.description + " due by "

+ task.dueDate.toLocaleDateString());

}

The data package to fill up is given by the request.data object. The DataPackage component has
a couple of generic properties, such as title and description. You might want to set them as a way to
describe the data you’re going to provide. Consider that both the Share panel and target applications
may be using these properties. So setting them to a meaningful value is always a good thing. In this
case, you set the title property to a static text such as “TO DO” and the description property to the
actual description of the task.

220 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Finally, you prepare the actual string of text to share and copy it to the package using the setText
method. Figure 9-9 shows the effect of the change: the TodoList application can now pass data to the
Mail application through the Share panel of the Charms bar.

FIGURE 9-9 The TodoList application ready to share task information.

Once the user has clicked one of the listed applications (only the Mail is listed as a receiver in the
screenshot), the control passes to the selected application. The application inspects the data package,
ensures it contains data it can handle, extracts data in the most convenient format, and then uses it.
Figure 9-10 shows what the Mail application can do with the passed data: it prepares a new email and
automatically sets to the body of the email to the shared text.

FIGURE 9-10 The Mail application is consuming data from TodoList.

 CHAPTER 9 Integrating with the Windows 8 environment 221

Sharing data as HTML
Sharing data as HTML is only a bit more complicated. The most intriguing part is how you format the
HTML. You can create the HTML string programmatically by concatenating text and HTML elements
or you can write the HTML directly in the HTML page and read it from there. If you do so, the benefit
is that your code is cleaner and the HTML structure can be understood more easily and modified
quickly. In addition, you can use any visual editor to edit it.

You open default.html and add the following markup at the bottom of the file just before the
 closing tag of the BODY element:

<div id="shareHtml" style="display:none;">

 <div style="padding:3px;background:#999;color:#fff">DESCRIPTION:</div>

 <div></div>

 <div style="padding:3px;background:#999;color:#fff">DUE DATE:</div>

 <div></div>

 <div style="padding:3px;background:#999;color:#fff">PRIORITY:</div>

 <div></div>

 <div style="padding:3px;background:#999;color:#fff">STATUS:</div>

 <div></div>

 <div style="padding:3px;background:#999;color:#fff">COMPLETED:</div>

 <div></div>

</div>

This is the layout of the HTML the application will be sharing. The HTML layout is populated with
task data via data binding—this is the same approach we used earlier for the task summary. Note also
that you don’t want this piece of HTML to show up in the page. For this reason, it is essential that you
explicitly set the display CSS attribute on the root element to none. This ensures the HTML block will
stay invisible.

Now add the following function to the bottom of the todolist.js file:

TodoList.shareDataAsHtml = function (e, task) {

 var request = e.request;

 request.data.properties.title = "TO DO";

 request.data.properties.description = task.description;

 // Load the HTML layout and run data binding

 var elem = document.getElementById("shareHtml");

 WinJS.Binding.processAll(elem, task);

 var rawHtml = elem.innerHTML;

 // Make the raw HTML compliant with Windows 8 requirements

 var html = Windows.ApplicationModel.DataTransfer.HtmlFormatHelper.

createHtmlFormat(rawHtml);

 request.data.setHtmlFormat(html);

222 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 // This extra work is necessary ONLY if the HTML references an image.

 // This is the URL of the image as in the HTML block.

You transform it in a URI object

 // and store it as an in-memory stream in the DataPackage resources.

 var localImage = "ms-appx:///images/todolist-icon.png";

 var url = new Windows.Foundation.Uri(localImage);

 var streamRef = Windows.Storage.Streams.RandomAccessStreamReference.

createFromUri(url);

 request.data.resourceMap[localImage] = streamRef;

}

You retrieve the HTML block as a string by reading the content of the innerHTML property of
the DIV element. The raw HTML must be formatted to comply with Windows 8 requirements. This is
 accomplished by the createHtmlFormat helper method. Finally, you call setHtmlFormat to package the
HTML description of the task.

If the HTML references one or more images, then some extra work is required. In particular, images
must be referenced using an ad hoc protocol—the ms-appx protocol. This protocol identifies images
as a native part of the application. In other words, if you want to include an image that belongs to
the resources of the application, then you must use the ms-appx protocol. If you intend to reference
 images from remote URLs, then using the HTTP protocol is fine. In the example above, todolist-icon.
png is an image file stored in the images folder of the application’s project.

Figure 9-11 shows the content of the email used to share the task.

FIGURE 9-11 Sharing a task as HTML.

 CHAPTER 9 Integrating with the Windows 8 environment 223

Conditional sharing
There might be situations in which an application that shares data is unable to do so. A common
example is when the user is required to select some data in order for the data to be shared.
For example, in the TodoList application it might be wise to require that data is shared only if a
 non-empty description has been provided.

You deal with conditional sharing in the handler of the datarequested event. Here’s how to modify
the code you previously added to the TodoList.init method to enable the Share source contract:

TodoList.clipboard.addEventListener("datarequested", function (e) {

 var currentTask = TodoList.getTaskFromUI();

 if (currentTask.description.length === 0) {

 e.request.failWithDisplayText("Indicate a description of the task.");

 return;

 }

 TodoList.shareDataAsHtml(e, currentTask);

 TodoList.shareDataAsPlainText(e, currentTask);

});

The failWithDisplayText method causes the share action to fail. The optional text is displayed to the
user. If you don’t provide any help text, then the user will receive a generic message stating that the
application is not currently able to share anything.

programmatic sharing
Using the Charms bar is not the only way to trigger the Share panel. Each application can offer its
own user interface for the user to start the sharing process. For example, you can add a new button to
default.html that sits side by side with the existing Add Task button.

<button id="buttonShare">Share</button>

In TodoList.init, you also add a click handler for the button:

document.getElementById("buttonShare").addEventListener("click", TodoList.

shareClick);

Finally, here’s the code for the new function TodoList.shareClick which does the trick of program-
matically displaying the Share panel out of the Charms bar.

TodoList.shareClick = function () {

 Windows.ApplicationModel.DataTransfer.DataTransferManager.showShareUI();

}

224 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Note In order to be listed as share target (that is, as the Mail application you dealt with in
this exercise), an application needs to implement the Share target contract. You implement
this contract by adding a special item to the project from the Add New Item dialog of
Microsoft Visual Studio. Adding a new share target item will bring three new files to
your project and some changes to the project manifest. You’ll get new CSS, HTML, and
JavaScript files that provide style, markup, and code respectively for a new page. Changes
in the manifest inform Windows 8 that your application intends to participate in the Share
 contract. When the user selects your application to receive some shared content, the new
page is displayed and its logic allows you to receive and process data. A Share Target
 application is not expected to display the full-blown user interface. It is, instead, expected
to display the minimum user interface for the execution of a particular task on the received
content. An example of a Share target application can be found in the Windows SDK.

Providing a Settings page

The Settings panel in the Charms bar is meant to be the place where users always look for quick
 access to the settings that an application may have. A Windows Store application can provide a
 collection of additional pages to be listed in the Settings panel for the user to change options that
affect the behavior of the application, as well as get to the Help or About pages. In this exercise, you’ll
create a Settings page for the TodoList application.

populating the Settings charm
When the user clicks the Settings panel in the Charms bar, the application receives an onsettings
event. Therefore, providing a handler for this event is the very first step to accomplish.

Creating the settings flyout
The Settings panel is essentially a flyout component that gets configured with a list of application
commands. An application command is a HTML page and a title string. You open default.html and
add the following code before the call to app.start.

 app.onsettings = function (e) {

 e.detail.applicationcommands = {

 "about": {

 href: "/pages/about.html",

 title: "About"

 },

 "privacy": {

 href: "/pages/privacy.html",

 title: "Privacy"

 },

 CHAPTER 9 Integrating with the Windows 8 environment 225

 "settings": {

 href: "/pages/settings.html",

 title: "Settings"

 }

 }

 WinJS.UI.SettingsFlyout.populateSettings(e);

 };

The mandatory next step is creating three new HTML pages. You create all of them in the pages
project folder and name them as above: about.html, privacy.html, and settings.html. You do this using
the Add New Item function of the context menu of the project window in Visual Studio. For now,
skip over the required content and just keep the default markup that Visual Studio adds to any newly
 created HTML page.

As you can see in Figure 9-12, the Settings panel lists three additional items, one for each of the
registered commands. If you click any of them, though, nothing happens. This is the time to make
some changes to the HTML of the various pages.

FIGURE 9-12 The Settings charm of TodoList.

Creating a read-only page
With the notable exception of the page used to configure the application, most of the pages you
have listed here are read-only pages. They just provide users with information such as release notes,
an end-user agreement, help, or perhaps information about the author. All these pages can have a
 common layout on top of different content. Let’s address, for example, the About page.

226 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

You open the about.html page and assign the following markup to the BODY tag:

<div id="aboutContainer"

 data-win-control="WinJS.UI.SettingsFlyout"

 data-win-options="{settingsCommandId:'about'}">

 <div class="win-ui-dark win-header">

 <button type="button"

 onclick="WinJS.UI.SettingsFlyout.show()"

 class="win-backbutton"></button>

 <div class="win-label">About TodoList</div>

 </div>

 <div class="win-content">

 <div class="win-settings-section">

 <!-- Your content goes here -->

 <h1>v1.0.0.0.1</h1>

 </div>

 </div>

</div>

It is important that the page contains a root DIV bound to the SettingsFlyout component. The ID
of the DIV is unimportant but it should be unique within the application. Also the command ID you
assign through the data-win-options attribute should be unique.

To give the page a look and feel consistent with other applications, you might want to add a
child DIV element styled with the win-header CSS class. Also using the win-ui-dark class is a matter
of graphical preference. You can choose between win-ui-dark and win-ui-light. Finally, you need a
 button to navigate back to the application. For this reason, you add a BUTTON element, as in the
 listing above. Finally, the DIV styled with the win-label class determines the caption of the page.

Any page-specific content goes into the DIV styled as win-content. You are completely free to
structure and style this content as you like. It is purely a matter of style; it doesn’t affect the behavior
of the application.

Figure 9-13 shows the look and feel of the About page.

All the steps described here for the About page can be safely replicated for any other page you
want to list in the Settings charm that doesn’t require interaction with the user.

Note As a user, you can dismiss the Settings panel by clicking or tapping outside the area
or just clicking or tapping the Back button.

 CHAPTER 9 Integrating with the Windows 8 environment 227

FIGURE 9-13 The About page.

Creating a functional Settings page
The layout of the Settings page—namely the page the user displays to change options and configure
the application to work differently—is the same as read-only pages. However, creating a Settings
page is much more challenging since it requires that you save settings somewhere and use them
throughout the application. This will take you to make some relevant changes to the code used so far.

Defining an application-wide settings object
If your application is expected to support customizable settings, then you should have an object that
defines all possible options. You open todolist.js and add the following code:

var TodoListSettings = WinJS.Class.define(function () {

 var localSettings = Windows.Storage.ApplicationData.current.localSettings;

 var that = {};

 that.defaultPriority = TodoList.Priority.Normal;

 that.load = function () {

 _loadFromSettings();

 };

 that.save = function () {

 _saveToSettings();

 };

 function _loadFromSettings() {

 var priority = localSettings.values["defaultPriority"];

 if (priority) {

 that.defaultPriority = priority;

 }

 };

228 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 function _saveToSettings() {

 localSettings.values["defaultPriority"] = that.defaultPriority;

 };

 return that;

});

TodoList.settings = new TodoListSettings();

Important The exact position of this code is not particularly important, so long as it is
 preceded by the definition of the TodoList.Priority object. It is suggested that you add this
code at top of the file right after the definition of the TodoList object and make it follow
only the definition of the TodoList.Priority object.

The TodoListSettings object is an object with one property—the defaultPriority property. This is
because in the current example you are going to have only one customizable option—the default
priority level of any newly created task. So far, you had it default to Normal; now you want to make
this value configurable on a per user basis.

However, the TodoListSettings object is not limited to defining the defaultPriority property; it also
features a couple of load/save methods. The idea is that the TodoListSettings object makes itself
 responsible for loading and saving its content to a persistent store without requiring more than a
plain call to the load or save method. The details of how settings are persisted or retrieved are not
known outside the boundaries of the object.

In addition, an instance of the TodoListSettings object is created during the initialization of the
application and is made available through the TodoList.settings object. The bottom line is that in this
way, the application loads its settings from a persistent store at startup and these settings are globally
available for the entire lifecycle.

persisting application settings
Windows 8 provides applications with a system dictionary where data can be saved in pairs—a
unique ID and a corresponding value. Values can only be primitive types, such as strings and integers.
The system object that provides access to this data store is Windows.Storage.ApplicationData.current.
localSettings. The object exposes a values property that is the actual dictionary where data is stored.

For example, the default priority level set for the application is stored in an entry whose ID
matches the property name.

var priority = localSettings.values["defaultPriority"];

 CHAPTER 9 Integrating with the Windows 8 environment 229

Note that this is only a recommended practice; you can name the dictionary entry in any arbitrary
way. To save values permanently, you use code as below:

localSettings.values["defaultPriority"] = someValue;

To complete the initialization of the application, you need to place a call that actually loads
 settings upon application startup.

TodoList.settings.load();

In todolist.js, you also add the previous line of code at the end of the TodoList.init method. Now
that settings have been integrated in the application, you need to use them where it makes the most
sense. This drives some further changes in todolist.js.

In particular, you edit the Task object so that it defaults the priority property to the value read-out
of the settings:

var Task = WinJS.Class.define(function () {

 var that = {};

 that.description = "This is my new task";

 that.dueDate = TodoList.firstOfNextMonth();

 that.priority = TodoList.Priority.Normal;

 ...

 if (TodoList.settings.defaultPriority != "undefined")

 that.priority = TodoList.settings.defaultPriority;

 return that;

});

Another change regards the TodoList.performInitialBinding method. At this point, you might want
it to initialize the user interface based on the Task object it receives; not on the Task object it creates
internally:

TodoList.performInitialBinding = function (task) {

 // var task = new Task(); // This line must be removed

 // Rest of the code here

 ...

}

Finally, you introduce a new function like this:

TodoList.displayTask = function (task) {

 TodoList.performInitialBinding(task);

}

230 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

A call to the new TodoList.displayTask function is placed now at the very bottom of the TodoList.init
method. At the same time, you remove any call to TodoList.performInitialBinding you may have in the
TodoList.init method. Here’s the new layout of the TodoList.init method:

TodoList.init = function () {

 // Register handler for resize events

 window.onresize = addEventListener('resize', TodoList.onResize, false);

 // Register handler for buttons

 document.getElementById("buttonAddTask").addEventListener("click", TodoList.

addTaskClick);

 document.getElementById("buttonShare").addEventListener("click", TodoList.

shareClick);

 // Initialization of Share source contract

 var view = Windows.ApplicationModel.DataTransfer.DataTransferManager.

getForCurrentView();

 view.addEventListener("datarequested", function (e) {

 var currentTask = TodoList.getTaskFromUI();

 if (currentTask.description.length === 0) {

 e.request.failWithDisplayText("Indicate a description of the task.");

 return;

 }

 TodoList.shareDataAsHtml(e, currentTask);

 TodoList.shareDataAsPlainText(e, currentTask);

 });

 // Load settings and initialize the view

 TodoList.settings.load();

 TodoList.displayTask(new Task());

}

With these changes, every time the application starts up the default value of the priority parameter
is read from application settings and used to initialize the user interface.

Note In particular, the changes you made here to performInitialBinding and the
 introduction of the displayTask function will make it much easier to add new functions to
the application in the upcoming chapters.

Creating the Settings page
At this point, you’re ready to turn your attention to the settings.html page. You give the page the
same layout as other pages. You add the following markup to the BODY element.

 CHAPTER 9 Integrating with the Windows 8 environment 231

<div id="settingsContainer"

 data-win-control="WinJS.UI.SettingsFlyout"

 data-win-options="{settingsCommandId:'settings', width:'narrow'}">

 <div class="win-ui-dark win-header">

 <button type="button" onclick="WinJS.UI.SettingsFlyout.show()"

 class="win-backbutton"></button>

 <div class="win-label">TodoList Settings</div>

 </div>

 <div class="win-content">

 <div class="win-settings-section">

 <h3>DEFAULT PRIORITY
(1=VERY LOW - 5=VERY HIGH)</h3>

 <input id="taskPriority_settings" type="range" min="1" max="5"

 data-win-bind="value: defaultPriority;" />

 </div>

 </div>

</div>

Figure 9-14 shows the graphical aspect of the Settings page.

FIGURE 9-14 The Settings page of the TodoList application.

The final step is initializing the Settings page with the current settings and saving any new value
that the user may select in the page back to the application settings. For this to happen, you need
to hook up a couple of events in the settings flyout. You add a new JavaScript file to the project and
name it settings.js. Also, you reference this file as well as todolist.js from settings.html, as shown
below:

<script src="/js/todolist.js"></script>

<script src="/js/settings.js"></script>

232 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

In the settings.js file, you add the following code:

(function () {

 "use strict";

 var page = WinJS.UI.Pages.define("/pages/settings.html", {

 ready: function (element, options) {

 document.getElementById("settingsContainer")

 .winControl

 .addEventListener("beforeshow", beforeShow);

 document.getElementById("settingsContainer")

 .winControl

 .addEventListener("afterhide", afterHide);

 }

 });

 function beforeShow() {

 loadSettings();

 };

 function afterHide() {

 saveSettings();

 };

 function loadSettings() {

 var bindableElement = document.getElementById("settingsContainer");

 WinJS.Binding.processAll(bindableElement, TodoList.settings);

 };

 function saveSettings() {

 var priorityElem = document.getElementById("taskPriority_settings");

 var currentPriority = priorityElem.value;

 TodoList.settings.defaultPriority = currentPriority;

 TodoList.settings.save();

 };

})();

The code registers handlers for the beforeshow and afterhide events of the flyout behind the
 Settings page. In this way, you can run your code just before the Settings panel is displayed and just
after it is hidden.

Needless to say, you initialize the controls in the Settings panel with current settings in the handler
of the beforeshow event and save changes back to the application settings in the handler of the
 afterhide event.

 CHAPTER 9 Integrating with the Windows 8 environment 233

Important It is key to note that thanks to the effort made earlier in the exercise—isolating
access to the application settings in a single object—you can now read and save settings
quickly and easily without knowing many details of the infrastructure.

The net effect of these changes is that you can now open the Settings page, modify the default
priority value, and have it honored anytime a new task is created.

Note If you successfully proceeded through the steps of the exercise, you might have
an outstanding question at this point. Why on earth did you tell me to handle before/
after events on a window instead of just placing a Save button in the Settings page? The
 guidelines for Windows Store applications warmly recommend you avoid save buttons on
the Settings page and, subsequently, handling before/after events is the only choice left.

Summary

In this fairly long chapter, you learned how to better integrate a Windows Store application with the
surrounding environment. Technically speaking, integration is achieved via contracts and extensions.
Contracts and extensions are also the main tool for developers to customize and extend basic
 Windows functionalities.

Implementing contracts and writing extensions is beyond the scope of this beginner’s book;
 examples can be found in the Windows SDK, as well as in more advanced books on the subject of
Windows 8 programming. Using contracts as services, instead, is much easier and only requires
 learning about a few objects. In this chapter, you touched on files and storage. That is just the topic of
the next chapter.

 235

Chapter 10

Adding persistent data to
applications

 It matters if you just don’t give up.
—Stephen Hawking

No applications that are expected to be more than just a basic exercise can operate without persis-
tent data. As users work with the application, they produce information by entering fresh data or

processing known values. This information will not be lost with the shutdown of the application. This
information is vital and must be persisted somewhere to be reloaded on the next session or on demand.

To make data persistent, software uses files; sometimes applications make use of very special
files known as databases. A database is ultimately a large collection of files owned and managed by
a specific and distinct application. Interacting with a database is more expensive in terms of system
resources since it involves ad hoc protocols for an app-to-app communication.

In this chapter, you won’t use any database, but you will go through a number of exercises that
involve files. In particular, you’ll be extending the TodoList application to make it able to save tasks
to files and reload them on demand. In doing so, you will also learn a lot about the application
 programming interface (API) available to Windows Store applications to deal with persistent data.

Persisting application objects

The first exercise of this chapter consists of taking the version of the TodoList application you worked
on in the last chapter one step further. You will enable the application to pick a file and save some of
the details of the task to it.

http://www.quotationspage.com/quote/27616.html

236 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Making Task objects persistent
You make a copy of the TodoList project as you left it at the end of Chapter 9, “Integrating with the
Windows 8 environment”; name this new project TodoList-Persistence. To avoid confusion, you
might also want to open default.html and edit the title of the application. In the BODY element of the
page, replace the H1 element as shown below:

<h1>TO-DO List (CH10)</h1>

The application currently lets you pick a file name from a folder on the local disk and returns you
an object that represents the file you’d like to have. This file, however, doesn’t exist yet; so the next
step is creating a real file and storing some real data to it. For this to happen, you must be familiar
with the Input/Output (I/O) objects of Windows 8.

The add-task use case
In Chapter 9, you learned how to invoke the File Save Picker component to pick up a file name from a
disk folder. Figure 10-1 briefly recalls the steps of the add-task workflow.

FIGURE 10-1 The add-task workflow.

First the user clicks the Add Task button; next she is presented a summary of the current task,
and if everything is OK then she proceeds to save the task to disk. The application pops up a file
picker and she selects a folder and enters a file name. In Chapter 9, you had the following code in the
 TodoList.invokeSavePicker method within the todolist.js file:

savePicker.pickSaveFileAsync().then(function (file) {

 if (file) {

 TodoList.alert(file.name);

 }

});

 CHAPTER 10 Adding persistent data to applications 237

It is now about time you replace the basic message box with the code that actually creates the file.

Saving data to a file
In Microsoft Windows 8, the File Save Picker component seeks to be more helpful than one might
 expect. It doesn’t simply return you an object that describes the file you intend to create; it returns
you a true file object. In other words, the object you get from the picker refers to a file that has
 already been created for you. The file is empty, but it exists already. Subsequently, all you have to do
is write some text to it.

You open the todolist.js file and add the following code to the TodoList.invokeSavePicker method to
deal with the File Save Picker:

savePicker.pickSaveFileAsync().then(function (file) {

 if (file) {

 // The file ALREADY exists; the file picker CREATED it with 0 bytes

 Windows.Storage.FileIO

 .writeTextAsync(file, "Some data")

 .done(function () {

 TodoList.alert("Data successfully saved");

 },

 function (error) {

 TodoList.alert("Unable to save data. Sorry about that!");

 }

);

 }

});

Admittedly, the syntax of the I/O objects in Windows 8 is a bit convoluted, but not really scary.
The basic object for I/O manipulations is Windows.Storage.FileIO. This object exposes a method
called writeTextAsync; it takes a file object and some text and simply writes the text to the file. In the
example above, you are saving the text “Some data” to the picked file.

In Windows Store applications, most system operations are performed in an asynchronous
way. This means that the instruction that follows the asynchronous call executes immediately
without waiting for the other instruction to complete. While asynchronous calls ensure the highest
 responsiveness of the application’s user interface, they make underlying code harder to read and
write.

In particular, to express a sequential semantic where two or more actions occur one after the
completion of the previous, you need to resort to a “fluent” syntax, as shown below:

Windows.Storage.FileIO

 .writeTextAsync(...)

 .done(ok, error)

238 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

It reads like you write some content to a given file and when this has been done you take different
routes, whether the operation completed successfully or with some errors. You’ll be using this pattern
quite often in Windows Store applications.

Figure 10-2 shows the state of the folder now that a file has been created.

FIGURE 10-2 The newly created file viewed through Windows Explorer.

Creating your own files
The next time you go through the Add Task workflow from within TodoList and select the same file,
you’ll get the following message from the file picker, as shown in Figure 10-3.

FIGURE 10-3 Trying to overwrite an existing file.

 CHAPTER 10 Adding persistent data to applications 239

This means that the file picker is trying to create a file but it finds out that a file with the same
name already exists. The picker then asks advice. Let’s have a look at the API required to create a new
file programmatically. The following example provides an alternate route to pick a file. Instead of
 using a File Save Picker, you pick a folder and then create a file programmatically:

TodoList.invokeFolderPicker = function (task) {

 var folderPicker = new Windows.Storage.Pickers.FolderPicker();

 folderPicker.fileTypeFilter.replaceAll(["*"]);

 folderPicker.SuggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.

desktop;

 // Invoke the folder picker

 var fileOptions = Windows.Storage.CreationCollisionOption;

 var io = Windows.Storage.FileIO;

 folderPicker

 .pickSingleFolderAsync()

 .done(

 function (folder) {

 if (folder) {

 folder.createFileAsync("sample.todo", fileOptions.replaceExisting)

 .done(function (file) {

 io.writeTextAsync(file, "Some more data.")

 .then(function () { io.appendTextAsync(file, " By me."); })

 .done(function () { TodoList.alert("All done!")})

 },

 function (error) {

 TodoList.alert("Unable to create file. Sorry about that!");

 });

 }

 });

}

Once you get a folder object, you can call the createFileAsync method, which takes the file name
and some options. In particular, the Windows.Storage.CreationCollisionOption enumeration includes
values to silently replace the file if it exists (replaceExisting) or fail if a name collision is detected
(failIfExists).

In the done method which runs once the file has been created, you put the code to write text.
Again the done method can be used to trigger any subsequent code, such as displaying an all-done
message to the user.

240 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Note The then method is executed as soon as the previous function has either successfully
completed or has reached an error. The done function is the same, except that it is guaran-
teed to throw any error that is not handled inside the function.

Appending text versus just writing text
When you use the writeTextAsync method, Windows 8 just opens the file, writes any content, and then
closes it. If you call writeTextAsync twice, then the content is overwritten; the second call completely
wipes out the existing content.

If you want to just append text to an existing file, you have to use the appendTextAsync method.
The method has the same syntax as the writeTextAsync method. In the previous code snippet, you see
an example of the two methods used sequentially.

Because of the asynchronous API, however, you might want to keep sequential tasks to a minimum
to prevent your code from reaching an unmanageable level of nesting. As far as file writing is
 concerned, you might always want to focus on writing any content to files in a single step.

Note If you explore the list of methods out of the Windows 8 file object, you will find
methods to rename, copy, delete, and move files. You won’t find methods to read or write
any content to a file exposed on the file object itself. For reading and writing files, you must
always use methods on the Windows.Storage.FileIO object.

Deleting files
Another common operation that an application may perform is deleting files it had previously created
or, more in general, any files that, for some reason, it needs to delete. As noted a moment ago, file
deletion is an operation that requires a file object to be performed. Here’s an example where you
 assume to have the file object available:

file.deleteAsync()

 .done(function () { TodoList.alert("File deleted" },

 function () { TodoList.alert("Unable to delete the file" });

Choosing a serialization format
Now that you have grabbed the basics of file manipulation in Windows 8, let’s return to the TodoList
application. You integrated file saving in the code, but you didn’t actually save any task yet. The code
discussed earlier, in fact, created a file with a given name that was limited to store sample text in it.
The next step is therefore choosing a format to store real data to a file. The process of streamlining
real data to a file is commonly referred to as serialization.

 CHAPTER 10 Adding persistent data to applications 241

Adding a data serialization component
Some changes are required to the TodoList.invokeSavePicker method to make it save the current
Task object. First, you change the line that calls into writeTextAsync so that instead of writing down a
 constant sample text, it now writes the string returned by a new wrapper function:

Windows.Storage.FileIO

 .writeTextAsync(file, TodoList.serializeTask(task))

In addition, you write the skeleton of the TodoList.serializeTask function and add it to todolist.js:

// Task Serializer

TodoList.serializeTask = function (task) {

 // Just save the description of the task

 return task.description;

}

In this way, the file saves only the description of the task but loses all other information. How
would you save the entire data set of a Task object?

A quick answer to the question simply says that the serialization format is entirely up to you. You
should just be aware that the TodoList.serializeTask function will return a string that is saved as is to
the file. From the perspective of the function, whatever string works well.

The Task object is made of several pieces of information: description, due date, priority, and so
forth. You might want to save them all. One option could be concatenating each piece of information
using a particular character (such as, the pipe character |) as the separator. Here’s an example:

TodoList.serializeTask = function (task) {

 return task.description + "|" +

 task.dueDate + "|" +

 task.priority + "|" +

 task.status + "|" +

 task.percCompleted;

}

The resulting string may look like the one shown below:

This is my new task|Sat Dec 1 12:00:00 UTC+0100 2012|3|Not Started|0

There’s nothing wrong with this format, except that it requires an ad hoc piece of code to be read
and parsed back to a Task object. The process of transforming a string of text to an object is referred
to as deserialization.

242 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Generally, the problem here is that by choosing a custom serialization format you make yourself
responsible for writing both the serializer and the deserializer. In addition, every format requires a
distinct ad hoc pair of serializer and deserializer.

In JavaScript, a better option does exist; it entails using a special notation known as the JSON
 format. The acronym JSON stands for JavaScript Object Notation.

The JSON format
JSON is a text format easy to handle and read for both humans and software. Basically, JSON defines
a set of conventions through which any object can have its data serialized to a standard format. A
JSON string is made of a collection of name/value pairs each of which identifies a property name and
its value. A special convention also exists for rendering arrays. The following text shows the JSON
 version of a Task object filled with default values:

{

 "description":"This is my new task",

 "dueDate":"2012-12-01T11:00:00.000Z",

 "priority":"3",

 "status":"Not Started",

 "percCompleted":"0"

}

The great news is that JavaScript and Windows 8 provide native tools to create a JSON string from
a JavaScript object and to obtain a JavaScript object from a JSON string. In addition, the generality
of the JSON format makes it suitable to treat just about any object. This means that you need only
one pair of serializer and deserializer in your code, regardless of the number of objects you intend to
persist and also regardless of their structure.

Serializing the Task object to JSON
To use JSON in the TodoList application, all you need to do is use the following code for the TodoList.
serializeTask function:

TodoList.serializeTask = function (task) {

 return JSON.stringify(task);

}

JSON.stringify is a JavaScript native function that turns any JavaScript object into a JSON
 compatible string. Figure 10-4 shows the JSON content of a Task object being read with a plain text
editor, such as Notepad.

 CHAPTER 10 Adding persistent data to applications 243

FIGURE 10-4 The JSON content of a .todo file created by TodoList.

The next challenge is now making TodoList capable of loading and editing existing JSON-formatted
tasks.

Creating Task objects from files
On the way to reading back the content of saved Task objects, you make a couple of changes to the
user interface of the TodoList application. You add a button to create a blank new task and a button
to open an existing task from the specified file.

Making changes to the user interface
You open the default.html page and add the following markup to the DIV element that contains the
other two buttons to add and share a task.

<button id="buttonNewTask">New</button>

<button id="buttonOpenTask">Open</button>

Next, in the todolist.js file, you locate the TodoList.init method and add the following code to
 register handlers for the click event of the two new buttons.

document.getElementById("buttonNewTask").addEventListener("click", TodoList.

newTaskClick);

document.getElementById("buttonOpenTask").addEventListener("click", TodoList.

openTaskClick);

Here’s the body of the handlers to add to the same JavaScript file:

TodoList.newTaskClick = function () {

 TodoList.displayTask(new Task());

}

TodoList.openTaskClick = function () {

 TodoList.pickFileAndOpenTask();

}

244 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The click handler for the New button is fairly straightforward: it just creates a blank new Task
object and displays through the helper method displayTask. The click handler for the Open button is a
bit more elaborate since it is connected to a File Open Picker that locates and selects the file to open.

Locating the file to open
The code for the TodoList.pickFileAndOpenTask method is similar to the code you used earlier for the
File Save Picker. This time you configure the picker object to select files with a .todo extension. This
function must be added to the todolist.js file as well:

TodoList.pickFileAndOpenTask = function () {

 var currentState = Windows.UI.ViewManagement.ApplicationView.value;

 if (currentState === Windows.UI.ViewManagement.ApplicationViewState.snapped &&

 !Windows.UI.ViewManagement.ApplicationView.tryUnsnap()) {

 // Fail silently if we can't unsnap

 return;

 }

 TodoList.invokeOpenPicker();

}

The code first ensures that the application is not in a snapped state and then invokes another
helper function that deals with the File Open Picker. Note that file pickers can only be used in filled
or full screen and can’t be invoked from snapped applications and from flyouts, including settings
flyouts. Here’s the code for the helper function TodoList.invokeOpenPicker:

TodoList.invokeOpenPicker = function () {

 var openPicker = new Windows.Storage.Pickers.FileOpenPicker();

 openPicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.

computerFolder;

 openPicker.fileTypeFilter.replaceAll([".todo"]);

 openPicker.pickSingleFileAsync().then(function (file) {

 if (file) {

 // Do something with the selected .todo file

 }

 });

}

Once the user has picked up a .todo file, the code should read the entire content and try to build a
Task object out of it. As mentioned, the .todo file is a file that contains JSON-formatted text resulting
from the previous serialization of a Task object.

 CHAPTER 10 Adding persistent data to applications 245

Reading file content
To read the content of the selected file you use the readTextAsync method on the Windows.Stor-
age.FileIO object. The method returns the entire content of the file as a string of text. The Windows.
Storage.FileIO object, however, also provides two more methods. One is readLinesAsync, which reads
the entire content and returns it as an array of lines of text. Using readLinesAsync or readTextAsync
depends on what you plan to do with the read text. For the purpose of deserializing some JSON
 content, this method is the perfect fit since you are not going to split the text in lines anyway.

The other method available on the Windows.Storage.FileIO object is readBufferAsync. This method
returns a buffer object, namely an array of bytes. This might be a good fit if you are working with
binary files such as images. For text-based applications, you may safely ignore this method.

Here’s the code to add to the TodoList.invokeOpenPicker method to grab the JSON string stored in
the selected file.

openPicker.pickSingleFileAsync().then(function (file) {

 if (file) {

 var io = Windows.Storage.FileIO;

 io.readTextAsync(file)

 .done(function (json) {

 // JSON deserialization takes place here

 }

});

The final step is deserializing the JSON string into a newly created Task object.

Deserializing Task objects
To serialize a Task object to a string you used the JSON.stringify method. A reverse method also exists
to revive a JSON string back to a JavaScript object. This method is JSON.parse. Here’s the code you
need to add to the TodoList.invokeOpenPicker method:

// Build a Task object

var task = JSON.parse(json);

// Display the Task object

TodoList.displayTask(task);

Unfortunately, during execution this code raises an exception. The exception is due to a failure in
the building of the date of the Task object. As weird as it may sound, what JSON.stringify serializes, its
counterpart JSON.parse can’t properly deserialize.

To be precise, this conflict shows up only if the serialized object has Date properties. If dates
are not involved, then everything goes smoothly. The problem can be tracked back to the JSON
 specification that does not officially include the Date type. The major issue here is not that JSON.parse
can’t handle a date string. More subtly, the issue is that it deserializes it as a plain string. So you won’t

246 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

experience any troubles when you deserialize, but only when (and if) you ever happen to work on
deserialized data. In other words, the exception you may run into may come from places in your code
that are not directly related to the deserialization operation.

What can you do?

The fix is actually quick and easy, but it needs be applied on a per-call basis.

// jsonDate is the string you get for a date from JSON.parse.

// To get a date object, you just pass this string to the constructor of the Date object.

var date = new Date(jsonDate);

You need to apply the fix when your applications deserialize from JSON and dates are involved.
Here’s the final version of the code you need to have in the TodoList.invokeOpenPicker method:

openPicker.pickSingleFileAsync().then(function (file) {

 if (file) {

 var io = Windows.Storage.FileIO;

 io.readTextAsync(file)

 .done(function (json) {

 var task = TodoList.deserializeTask(json);

 TodoList.displayTask(task);

 },

 function () { TodoList.alert("Unable to read the file") });

 }

});

You first deserialize the JSON string to a Task object and then you fix any Date properties. To keep
code cleaner, you might want to move the deserialization code to a specialized method in todolist.js:

TodoList.deserializeTask = function (json) {

 var task = JSON.parse(json);

 task.dueDate = new Date(task.dueDate);

 return task;

}

Figure 10-5 shows the process of selecting a task and Figure 10-6 shows the selected task
 displayed in the application’s user interface.

 CHAPTER 10 Adding persistent data to applications 247

FIGURE 10-5 Selecting a task file.

FIGURE 10-6 The selected task is now displayed in the user interface of the TodoList application.

Using the application’s private storage

So far, you have created and managed files by accessing the local disk of the machine directly. As you
may have noticed, a Windows Store application is not always allowed full access to the disk; but still
a section of the disk is freely accessible in reading and writing. In the rest of chapter, you will practice

248 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

with another form of storage that involves a section of the disk that is private to each application and
totally invisible to others.

Storage options in Windows 8
Windows Store applications have three options as far as storage is concerned. In Chapter 9, you
practiced with LocalSettings; earlier in this chapter you also practiced with files in the local disk. These
are two of the three storage options for a Windows Store application. The third option consists in a
section of the local disk that is reserved to the application. Let’s briefly compare the three options to
identify proper use-cases for each.

Saving to the localSettings storage
The localSettings storage is a data container specific to the application that takes the form of a
 dictionary. You access it programmatically, as shown below:

var applicationData = Windows.Storage.ApplicationData.current;

var localSettings = applicationData.localSettings;

You read and write data to the container using the classic dictionary approach. Each entry is
uniquely identified by a key and references a value. The key is a string of up to 255 characters in
length; the value can be any valid Windows 8 type (including arrays and collections of custom types)
not larger than 8 KB. You used the localSettings already in Chapter 9 to store the default settings of
the TodoList application. Here’s how you write and read an entry to the store:

// Write to the store

localSettings.values["sampleKey"] = "Some data";

// Read from the store

var value = localSettings.values["sampleKey"];

The localSettings dictionary provides a fairly rich programming interface with methods to remove
an item, check for existence, and also some query commands. You can find out more looking at the
MSDN documentation for the ApplicationDataContainerSettings class at the following URL: http://
msdn.microsoft.com/en-us/library/windows/apps/windows.storage.applicationdatacontainersettings.

The localSettings store is not limited to storing only user preferences and also can be used to store
live data of the application. However, the dictionary layout and limitations in the size of individual
entries make it a good choice for small pieces of data that can be retrieved and stored as a key/value
pair. As long as you can retrieve the data you want with a direct call, this store can serve you well. In
addition, using this API doesn’t require you to deal with the intricacies of asynchronous programming
and basic I/O operations, such as creating, opening, and locating files.

 CHAPTER 10 Adding persistent data to applications 249

Important If you use the roamingSettings dictionary instead of localSettings, then all of
your stored data will be automatically synchronized by Windows 8 across all devices and
computers running the application under the same Windows account. This means that
you can set a preference on, say, a Microsoft Surface device and retrieve that setting when
you use the same application on a PC equipped with Windows 8. The API for reading
and writing data to the roamingSettings dictionary is identical to the API required for
 localSettings. The only barrier to using roamingSettings by default is whether the stored
data does really make sense if used on a different device. Usually, this is not an issue with
settings that represent user preferences on the configuration of an application.

Saving to the local disk
As you’ve seen so far, Windows Store applications can gain a partial access to the local disk. You can
programmatically access the Documents or Pictures folder and read and create files there. You can use
file pickers to gain access to any file in nearly any folder. However, you can’t programmatically point
your code to the root folder of a drive and start creating files and subfolders there. To fully use the
local disk, you need to rely on file pickers.

It is important to note that while programmatic access to known folders such as Documents and
 Pictures is permitted, it is still subject to user’s approval. More precisely, a Windows Store application
that needs to manipulate a known folder must pre-emptively declare its intention so that the user
 installing the application can be notified by the operating system. You do this by opening the manifest
file of the project in Microsoft Visual Studio and selecting the Capabilities tab (see Figure 10-7).

FIGURE 10-7 Declaring required capabilities in a Windows Store application.

250 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

With the few exceptions represented by library folders (Documents, Pictures, Music), using the local
disk from within a Windows Store application is restricted to using file pickers to locate files. Once you
hold a reference to a file or folder, though, you can freely operate on them. The local disk option is
effective for those applications which intend to create and consume data that remain on the disk for
other applications to consume. If the data your application manipulates doesn’t make sense outside
the application, then a direct use of the local disk is not probably the handiest option.

Note Files created in a local disk folder won’t be deleted when the user uninstalls the
application. This aspect may be a pro or a con for an application depending on its
intended use.

Important As you may see in Figure 10-7, a Windows Store application must also declare
as a special capability its ability to manipulate files on a removable storage device such as
an external hard disk or a USB pen drive. In addition, an application that intends to support
removable storage must declare in the Declarations tab of the manifest the types of file it
intends to work on. This is done to prevent an application’s access to only any files the user
may have on an external device.

Saving to the isolated storage
Sometimes the application and its data form a monolith that users want to keep or get rid of as
a whole. This pattern is kind of new for developers used to writing classic desktop applications; it
should be instead familiar to developers with some background in the development of mobile and
Microsoft Silverlight applications.

Windows Store applications can also have their own private space where they can create files
and folders. This space is physically located on the local disk, but its content can’t be accessed from
outside the application, either programmatically or through file pickers. Any files and folders created
in the application’s private space are lost when the user uninstalls the application. The application’s
private space is often referred to as the isolated storage.

There are three different types of isolated storage: local, roaming, and temporary. Table 10-1
 provides a description of the options.

TABLE 10-1 Different types of isolated storage

Storage Description

local Files and folders created within the local storage will only be stored on the local
 machine and stay there until the user uninstalls the application. The application is
solely responsible for updating or deleting files. These files are inaccessible for other
 applications and file pickers.

 CHAPTER 10 Adding persistent data to applications 251

Storage Description

roaming Files and folders created within the roaming storage are subject to the same rules as the
local store, except that they are synchronized between all Windows 8 machines running
your application under the same Windows account.

temporary Files and folders created within the temporary storage are subject to the same rules as
the local store, except that they will be deleted periodically by Windows.

The API for manipulating files (that is, creating, writing, and reading content) in the local disk
or the isolated storage is the same. All that changes is the root object to which you apply your I/O
 actions.

Note If none of the options listed here for storing data are satisfying, then you probably
want to consider using a true database. A database allows you to store data in tables where
a table is a collection of related data organized in columns. For example, the Task object
you used so far can easily be rendered as a row in a database table. The positive aspect of
using a database is mostly in the query capabilities it has; in this case, a database will offer
unparalleled capabilities of searching for tasks based on their priority, due date, or perhaps
completion. If these aspects are key for you, then embedding a database in your Windows
Store application is probably a wise choice. Having said that, which database can you run
on a Windows 8 device? The best choice is probably using SQLite. You can install the SQLite
runtime for Windows Store applications directly from the Tools | Extensions and Updates
menu of Visual Studio. Once there, you select the Online | Visual Studio Gallery tab, and
then query for SQLite. Details on the setup process and a quick introduction to using SQLite
in Windows 8 can be found here: http://bit.ly/MuzL1e.

Creating tasks in the isolated storage
The final exercise of this chapter consists of creating a new version of the TodoList application that
saves tasks to the isolated storage using the configuration that allows for tasks to roam across
 multiple Windows 8 devices. This means that your users will be able to create a task on a Windows 8
PC and retrieve the same task when they use the application from a Microsoft Surface device.

reworking the user interface of TodoList
To preserve the current version of TodoList that uses file pickers and creates tasks all over the
disk, let’s fork the project and create a fresh new copy of it. You can copy the folder and name it
 differently—for example, Todolist-Local. To avoid confusion, you also change the title bar in
default.html by replacing the H1 element with the following markup:

<h1>TO-DO List (CH10-Local)</h1>

The main trait of this new version is that you are not going to use file pickers anymore. Subsequently,
you don’t need an Open button anymore; at the same time, you need a view where all current tasks are

252 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

listed to be picked for further editing. In default.html, you add the following markup right below the H1
element.

<div id="list-of-tasks">

 <button id="buttonNewTask">New</button>

 <div id="task-listview"

 data-win-options ="{layout: {type: WinJS.UI.Listayout}}"

 data-win-control="WinJS.UI.ListView">

 </div>

</div>

<div id="task-listitem" data-win-control="WinJS.Binding.Template">

 <div class="listitem"></div>

</div>

You also locate the last DIV in the page with a form-section class and remove the BUTTON
 elements with the New and Open title. To be precise, the New button has been moved into the newly
added DIV.

In addition, you might want to wrap the visual controls used to create the task in a new DIV
 element named editor-container, as shown below:

<div id="task-editor" class="form-container">

 <div id="editor-container">

 <div id="buttonCancel-container"><button id="buttonCancel">Cancel</button></div>

 <!-- The existing task editor goes here -->

 </div>

</div>

The reason for this additional container is that it will let you hide and show the editor while
 maintaining the outermost container with its graphical settings. On top of the additional DIV, you also
place another DIV that contains a Cancel button.

To complete the reworking of the user interface, you also add a bit to the default.css file to give
new elements some non-default graphical aspects.

#list-of-tasks {

 float: left;

 width: 300px;

 height: 480px;

 color: #eee;

 padding: 5px;

 background-color: #1593dc;

 margin-top: 20px;

 margin-left: 20px;

}

#list-of-tasks button {

 CHAPTER 10 Adding persistent data to applications 253

 margin: 5px;

}

#task-listview {

 background-color: #daf5f7;

 height: 440px;

}

.listitem {

 color: #eee;

 padding: 4px;

 background-color: #00f;

 width: 280px;

}

#task-editor {

 float: left;

 margin-top: 48px;

}

#buttonCancel-container {

 text-align: right;

}

#editor-container {

 display: none;

}

Figure 10-8 shows the new user interface that you created.

FIGURE 10-8 The new user interface of TodoList.

254 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Well, not exactly! To really get the outcome of Figure 10-8, you also need to add some script to
todolist.js.

The idea of the new application is that the user picks a task from the left-side list and edits it in the
rightmost panel. If the user wants to create a new task, she clicks the New button on the top of the list
view. This means that there’s no need any more to create and display an empty task at the start of the
application. For the moment, all changes are limited to TodoList.init.

You begin by ensuring that the following line exists at the beginning of the method. It is
 reasonable to expect that this line is already in place, because all you did with respect to the older
version of the application was move the New button to a different position in the page.

document.getElementById("buttonNewTask").addEventListener("click", TodoList.

newTaskClick);

At the bottom of the TodoList.init method, you also comment out (or just remove) the following
line:

// TodoList.displayTask(new Task());

The TodoList.displayTask still remains a key asset of your script; it will just be called from other
places. The method needs some changes too:

TodoList.displayTask = function (task) {

 TodoList.performInitialBinding(task);

 // Ensure the editor is visible

 var editor = document.getElementById("editor-container");

 editor.style.display = "block";

}

In particular, the displayTask method now needs to ensure that the task editor is visible, since the
changes in the CSS file you made earlier just keep the editor hidden upon the application’s start.

When the user clicks the New button, she should get back the familiar interface of the TodoList
application, as shown in Figure 10-9.

 CHAPTER 10 Adding persistent data to applications 255

FIGURE 10-9 The user now clicks the New button to be able to create a new task.

The Cancel button will simply close up the editor. You need to register and create a handler for the
button. You register the button in the usual way shown here:

document.getElementById("buttonCancel").addEventListener("click", TodoList.

cancelTaskClick);

Here’s the required implementation:

TodoList.cancelTaskClick = function () {

 var editor = document.getElementById("editor-container");

 editor.style.display = "none";

}

So much for the graphical changes; you’re now ready for the more engaging task of populating
the list view with any Task files found in the local storage.

retrieving current tasks
Ideally, you want to populate the list view with all available tasks when the application starts up. For
this to happen, you add the following call as the final instruction in the TodoList.init method:

TodoList.populateTaskList();

256 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Next, you give this function at least a fake body:

TodoList.populateTaskList = function () {

 var tasks = [

 { description: "Task #1" },

 { description: "Task #2" },

 { description: "Task #3" }

];

 var bindingList = new WinJS.Binding.List(tasks);

 var listview = document.getElementById("task-listview").winControl;

 listview.itemDataSource = bindingList.dataSource;

 listview.itemTemplate = document.getElementById("task-listitem");

}

The method takes a static array of objects with the property name description and binds it to the
ListView you previously added to the default.html page. The property named description is key here
since it is the property referenced by the list item template. In the amended default.html page, you
should have markup such as what is shown below—which is used to render any data item bound to
the ListView:

<div id="task-listitem" data-win-control="WinJS.Binding.Template">

 <div class="listitem"></div>

</div>

Figure 10-10 provides the current state-of-the-art TodoList application.

FIGURE 10-10 A list view populated with fake tasks.

 CHAPTER 10 Adding persistent data to applications 257

The next step is changing the code of populateTaskList to make it create a list of Task objects from
the files found in the application’s local folder. You reference the application’s local folder with the
following code:

var localFolder = Windows.Storage.ApplicationData.current.localFolder;

If you want to make your application’s data available for roaming, you simply reference a different
folder:

 var localFolder = Windows.Storage.ApplicationData.current.roamingFolder;

Any further code that you’ll be writing doesn’t need updates whether you want it to save to the
machine’s local or roaming folder.

To get the list of files in a folder, you use the getFilesAsync method. The method passes its then
callback the list of files found in the folder. Note that if the folder contains subfolders, both subfolders
and their content are not included in the output of the getFilesAsync method. To get both files and
folders in the folder, you use getItemsAsync instead.

var localFolder = Windows.Storage.ApplicationData.current.roamingFolder;

localFolder.getFilesAsync()

 .then(function (files) {

 var io = Windows.Storage.FileIO;

 files.forEach(function (file) {

 // Do something with the file

 });

});

What should you do with any retrieved file? Assuming the file contains a JSON string, you read its
content and then deserialize it to a Task object. Next, you add the newly created object to an array.
Finally, the array will be transformed in a binding list and displayed through the ListView component.
Here’s the full implementation of the TodoList.populateTaskList method:

var tasks = new Array();

var localFolder = Windows.Storage.ApplicationData.current.roamingFolder;

localFolder.getFilesAsync()

 .then(function (files) {

 var io = Windows.Storage.FileIO;

 files.forEach(function (file) {

 io.readTextAsync(file)

 .then(function (json) {

 var task = TodoList.deserializeTask(json);

 tasks.push(task);

 })

 .then(function () {

258 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 var bindingList = new WinJS.Binding.List(tasks);

 var listview = document.getElementById("task-listview").winControl;

 listview.itemDataSource = bindingList.dataSource;

 listview.itemTemplate = document.getElementById("task-listitem");

 });

 });

 })

As you may notice, the need for using asynchronous methods requires an extra effort to keep
code readable and properly formatted. Also, keep in mind that any operation on folder content must
be wrapped in a then callback.

As a final touch, you might want to add a bit of code here to sort tasks by date. That entails adding
a couple of lines of code to the bindingList object. Here’s the code you need in the final then block
where the binding takes place:

var bindingList = new WinJS.Binding.List(tasks);

// Now sort the content of the list before binding to the listview

bindingList = bindingList.createSorted(function (first, second) {

 return first.dueDate > second.dueDate;

});

You also might want to use a slightly more sophisticated template for the ListView items. Instead
of simply showing the name of the file (or the description of the task), you might also want to display
the due date so that the sorting makes more sense to the user. Here’s a modified template for the
ListView items:

<div id="task-listitem" data-win-control="WinJS.Binding.Template">

 <div class="listitem">

 </div>

</div>

At this point, you’re all set as far as listing tasks are concerned, as you can see in Figure 10-11. You
now need to adjust the code that saves tasks to the local (or roaming) folder.

 CHAPTER 10 Adding persistent data to applications 259

FIGURE 10-11 Creating a new task and refreshing the task list.

Saving tasks to the roaming folder
When the user clicks to add or update the task, the current version of the code invokes the TodoList.
pickFileAndSaveTask method. This method in turn uses the file picker to find the file and saves content
to it. You can keep the same method name and just rewrite its body, as shown below:

var task = TodoList.getTaskFromUI();

var localFolder = Windows.Storage.ApplicationData.current.roamingFolder;

var name = task.description;

var io = Windows.Storage.FileIO;

var fileOptions = Windows.Storage.CreationCollisionOption;

localFolder.createFileAsync(name, fileOptions.replaceExisting)

 .done(function (file) {

 io.writeTextAsync(file, TodoList.serializeTask(task))

 .done(function () {

 TodoList.alert("All done!");

 TodoList.populateTaskList();

 TodoList.cancelTaskClick(); // clears the UI after saving

 })

 },

 function (error) {

 TodoList.alert("Unable to create file. Sorry about that!");

 });

260 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The name of the file is the description of the task; the folder where the file is created or saved is
the roaming folder of the application. Note that files will be silently overwritten if the names match.
This means that you can’t have two tasks with the same description.

Note that once the task has been saved, the user receives a confirmation message and the list of
tasks is automatically refreshed to include the newly created (or updated) task (see Figure 10-12).

FIGURE 10-12 The task has been successfully created.

Once the task is created successfully, the list view is refreshed and the newly created item is hidden
from view. The next step is selecting an existing item and editing it further.

Selecting tasks for editing
In Chapter 7, “Navigating through multimedia content,” you saw how to deal with the selection of
an item in a ListView component. It’s the same here to select a task from the list and have it fully
 displayed in the editor. You add an iteminvoked handler to the ListView. In todolist.js, add a new
method, as shown below:

TodoList.setupTaskList = function () {

 var listview = document.getElementById("task-listview").winControl;

 listview.itemTemplate = document.getElementById("task-listitem");

 listview.addEventListener("iteminvoked", TodoList.taskSelected);

}

 CHAPTER 10 Adding persistent data to applications 261

This method takes a few of the lines you already had in TodoList.populateTaskList. In particular, it
takes out the configuration work (such as, template and event binding) that only needs be done once.
You call TodoList.setupTaskList from within TodoList.init just before calling TodoList.populateTaskList.

TodoList.setupTaskList();

TodoList.populateTaskList();

Of course, you remove the two lines moved to TodoList.setupTaskList from TodoList.populateTaskList.

Finally, you take care of the code that runs when the user selects a task from the list. You add the
following method to todolist.js:

TodoList.taskSelected = function (eventInfo) {

 eventInfo.detail.itemPromise.then(function (item) {

 TodoList.displayTask(item.data);

 });

}

You ask (asynchronously) for the selected item and, when you get it, you extract the contained
data—the Task object—and pass it to the familiar TodoList.displayTask method, as shown in
Figure 10-13.

FIGURE 10-13 Selecting a task for editing.

262 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

One extra step you might also want to take consists of removing the selection on the ListView
when the current task is closed. Users close a task by clicking the Cancel button. Here’s the new
 version of the cancelTaskClick method:

TodoList.cancelTaskClick = function () {

 // Hide the editor

 var editor = document.getElementById("editor-container");

 editor.style.display = "none";

 // Remove any selection on the list view

 var listview = document.getElementById("task-listview").winControl;

 listview.selection.clear();

}

The last feature left for the exercise is deleting an existing task.

Deleting tasks
In Figure 10-13, you see a new button—the Delete Task button. When you use the local or roaming
folder, users have no way to dismiss in all or in part the entire data set they created. They can only
uninstall the application to get rid of the data. It is then wise that the application provides some UI
elements that will help users remove any undesired pieces of data. Here’s the markup for the Delete
Task button:

<div style="float:left">

 <button id="buttonDeleteTask">Delete Task</button>

</div>

You place the button close to the other buttons (Add Task and Share), but the style attribute that is
used aligns the element to the left edge of the container. You also need to register a handler for the
click event by adding the following line to TodoList.init:

document.getElementById("buttonDeleteTask")

 .addEventListener("click", TodoList.deleteTaskClick);

Next, you move to the implementation of TodoList.deleteTaskClick. The implementation of the
method is split into two parts—first, you ask for confirmation and second, you proceed with the
 deletion of the file behind the currently opened task. The following code sets up a message box with
a couple of buttons. The button that confirms the operation ends up invoking the TodoList.deleteTask
method that you’ll be writing in a moment. The button that denies the operation just exits from the
current operation.

TodoList.deleteTaskClick = function () {

 var message = "Are you sure you want to delete the task?";

 var msg = new Windows.UI.Popups.MessageDialog(message);

 CHAPTER 10 Adding persistent data to applications 263

 msg.commands.append

(new Windows.UI.Popups.UICommand("Yes, proceed!", TodoList.deleteTask));

 msg.commands.append

(new Windows.UI.Popups.UICommand("No, I'm not sure...", function() {}));

 msg.defaultCommandIndex = 1;

 msg.showAsync();

}

The defaultCommandIndex property sets the 0-based index of the button to be selected by
 default. In this case, the No button is selected, as seen in Figure 10-14.

FIGURE 10-14 Deleting a task.

Here’s the code that actually deletes the file:

TodoList.deleteTask = function () {

 // Get the task

 var task = TodoList.getTaskFromUI();

 // Locates the file and deletes it

 var name = task.description;

 var localFolder = Windows.Storage.ApplicationData.current.roamingFolder;

 localFolder.getFileAsync(name)

 .then(function (file) {

 file.deleteAsync().then(function () {

 TodoList.cancelTaskClick();

 TodoList.populateTaskList();

264 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 });

 });

}

You first get the object that references the task currently displayed in the editor, and then you get
the name of the corresponding file—in this case, the file name matches the description of the task.
Finally, you locate the file in the roaming folder. This is done by using the getFileAsync method, which
returns a reference to a single file, if it exists. To delete the file, you use the deleteAsync method.
When done, you clear up the editor and refresh the list view to remove the deleted task.

Summary

Using files is a necessity for any serious application. Windows Store applications are no exception. In
this chapter, you have learned the basics of file operations and the various storage options that are
available to applications. Of particular interest for Windows Store applications are the roaming folder
and roaming settings. By storing data in the roaming folder, and/or user settings in the roaming
 settings dictionary, you enable the operating system to synchronize that data across the cloud so that
any other copy of the application running on other devices (under the same Windows account) can
use it.

If this story hasn’t caught you enough yet, think of some fairly impressive commercials of the iOS
system you may have seen some time ago. In the commercial, a user on a train is reading a given
page of an e-book with an iPad. Then she gets back home and sits comfortably in front of a Mac
computer. She runs the same application and, magically, she is served the last page read. You can
achieve the same kind of magic in your Windows Store application by using the roaming folder and
roaming settings.

Another piece that you need to add to the Windows Store puzzle is getting remote data that is
accessible over the Internet. This is the topic of the next chapter.

 265

Chapter 11

Working with remote
data

The least of things with a meaning is worth more in life than the greatest of things
without it.

— Carl Jung

With very few exceptions, all mobile applications fall into one of the following categories: appli-
cations that just can’t work without an Internet connection and applications that are only par-

tially functional unless an Internet connection is present. You can’t truly call yourself a good Microsoft
Windows 8 developer until you have learned how to work with remote data across the Internet.

In this chapter, you will practice with data downloaded from a remote location using the HTTP
protocol. First, you will learn how to make an HTTP call to download data. Next, you will face the
more challenging task of interpreting the downloaded data so that you can make use of it in your
Windows application.

The first exercise will show you how to retrieve and display the news feed from a public site. You’ll
download a Really Simple Syndication (RSS) feed and adjust the data so that it displays within a list
view component. The second exercise will show you how to download JSON data from a different
site—the Flickr photo service—and arrange it in a dynamically built layout.

Working with RSS data

Many websites share their content via marked-up text available for download from a public and
documented URL, with the data usually formatted as an RSS feed. An RSS feed is essentially XML text
that follows a fixed schema. RSS is commonly used to publish frequently updated content, such as
blog posts, news headlines, and links to items in multimedia galleries in a standard format. A typical
RSS feed contains a summary of the data available on the origin site plus some additional information,
such as the publication date, the name of the author, and a link to the effective content.

http://www.quotationspage.com/quote/27616.html
http://www.quotationspage.com/quote/27616.html

266 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Getting remote data
You start by creating a new Windows 8 project using the Blank App template. Next, you create a
new Pages folder and add files such as header.html and footer.html from the previous chapters;
edit the default.html and default.css files accordingly. (This work is required only to ensure that all
 applications have a consistent look and feel.) More importantly, open default.js and add the following
 bootstrapping code:

app.onready = function (args) {

 rssReaderApp.init();

};

The init function will be invoked when the application is fully loaded and ready to respond to the
user’s commands. However, the init function doesn’t exist yet. To create it, add a new JavaScript file
to the project under the Js folder and name it rssReaderApp.js. Here’s the initial content for the new
file:

var rssReaderApp = rssReaderApp || {};

rssReaderApp.init = function () {

 // To be done

}

At this point you should have a working—but empty—application. Let’s spice it up a bit.

Getting familiar with XHr
In Windows 8, you use the WinJS.xhr object to perform access to remote HTTP endpoints. This object
gives you the ability to request an external URL and return whatever content the remote web server
provides. The WinJS.xhr object supports a variety of parameters, as you’ll see in a moment; however,
most of the time you need only pass the plain HTTP address you want to reach to make it work.
Modify the rssReaderApp.init function, as shown below:

// This is the URL that provides RSS content

rssReaderApp.Feed = "http://news.google.com/news?pz=1&output=rss";

rssReaderApp.init = function () {

 WinJS.xhr({ url: rssReaderApp.Feed }).then(function (rss) {

 // Do something with the data

 });

First, you save the URL you want to access as a public member of the rssReaderApp global object.
It is your responsibility to choose a URL that returns RSS data. If you are unfamiliar with RSS content,
you should recognize it on most websites from the popular icon shown in Figure 11-1.

 CHAPTER 11 Working with remote data 267

FIGURE 11-1 The popular icon that identifies links to URLs that return RSS data.

After you have determined the URL to invoke, you pass it along to the WinJS.xhr object. As usual
with operations that can be potentially lengthy, you need to write the code in asynchronous form.

WinJS.xhr({ url: rssReaderApp.Feed }).then(...);

You pass an object to WinJS.xhr with the url property set to the URL to invoke. That’s all that’s
required; you don’t need anything else for the call to take place. In the then method, place the code
that you want to run after a response has been obtained from the URL—in this case, after the RSS
data has been received. (The code in the then method will process the data and prepare it for display
in this case.)

A moment ago, you read that the URL is the only prerequisite for WinJS.xhr to be called.
 Remember, though, that setting the URL correctly is no guarantee of success. A call may fail for a
number of reasons, and you must be able to detect failures. In addition, you should ensure that the
Windows 8 environment allows you to venture beyond the local machine and access the World Wide
Web. Finally, you should make sure that the request you are sending out is well formed for the server
that is going to receive it. Let’s explore the options that you have to further configure the request.

Configuring the WinJS.xhr object
Table 11-1 enumerates the parameters you can optionally associate with a call to WinJS.xhr. These al-
low you to do things such as set the request type (for example, GET or POST), specify user credentials
for remote authentication, set HTTP headers, and so forth.

TABLE 11-1 Options for calling the WinJS.xhr object

Parameter Description

url This is a required parameter that indicates the URL to invoke. The URL can be absolute or
 relative. The HTTPS protocol is supported as well.

type Indicates the HTTP method to be used to open the connection with the specified URL.
Valid values for this parameter are GET, POST, PUT, DELETE, or HEAD. The parameter is not
 case-sensitive. If not specified, the type parameter defaults to GET.

user password You can use these parameters to specify credentials that are validated at the destination
 before servicing the request. If the user parameter is empty or missing, and the site requires
 authentication, then the user will be shown a logon window. If the user parameter is missing or
empty, the password parameter is ignored.

268 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Parameter Description

headers You can set this parameter to a JavaScript object whose property names indicate valid HTTP
header names. The property values are then set as header values in the HTTP request.

data The parameter refers to a JavaScript object that contains data to be passed to the server usually
via a POST request.

responseType Indicates the type of the expected response from a GET request. Feasible values are text (the
default), json, blob for binary content, and document for an XML object.

The WinJS.xhr object returns a JavaScript Promise object so that the developer can easily arrange
any subsequent steps following the asynchronous HTTP operation. When it comes to JavaScript
promises and asynchronous operations, you’ve used both then and done functions in previous
 chapters, but it’s useful to briefly revisit the difference between the two.

Windows 8 JavaScript (WinJS) library asynchronous operations always return a Promise object. As
the name may suggest, the object represents the promise of getting some usable data at some point
in the (near) future. So as a developer, you are allowed to specify those next steps using functions
such as Promise.done and Promise.then. Both functions indicate a future action to perform as soon as
the promised data becomes available. But what’s the difference?

Promise.done and Promise.then are exactly the same except that Promise.done breaks the chain by
returning undefined instead of a Promise object. In other words, you could write code such as:

WinJS.xhr(url).then(doThis).then(doThat).done(doAlsoThis);

But you can’t write code like this:

WinJS.xhr(url).done(doThis).then(doThat);

In other words, when you use the done function, you must be at the end of a chain of instructions.

Handling errors during HTTp requests
An HTTP request may fail for a number of reasons. For example, you may lose your connection
 before the request completes, or the request may be refused by the server because it is malformed or
because you didn’t provide valid credentials. Finally, the request may hang indefinitely and time out.
How do you deal with all these situations? This is just where the advanced capabilities of JavaScript
Promise objects come into play.

Both the done and then functions have the following prototype:

WinJS.xhr({ url: ... }).then(

 function completed(request) {

 // The request completed successfully.

 },

 function error(error) {

 // The request failed for some reasons.

 CHAPTER 11 Working with remote data 269

 }

 });

So far, you have passed only one function to the then function of the promise. The then function
invokes the first passed function when the request completes successfully. The completed function
receives the response from the server as its single argument.

As you can see from the prototype, however, you can also pass a second function to the promise.
That second function is the error handler for the request. The error handler function will be invoked
automatically by the system if the request fails for some reason. The error function receives an error
object, which has properties such as status, statusText, and message. Note that depending on which
error occurred, some of these properties may not be set. You might want to use a generic message
such as the one below and depicted in Figure 11-2.

WinJS.xhr({ url: rssReaderApp.Feed }).then(

 function (response) {

 rssReaderApp.parseFeed(response);

 },

 function (error) {

 rssReaderApp.alert("A download error occurred.");

 }

);

FIGURE 11-2 Handling errors during HTTP operations.

270 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Giving requests a timeout
A request to a remote server may take a while to complete. The time-to-response depends on a
number of factors, including bandwidth, and traffic on the target site. If completing the operation in
a fixed amount of time is critical for your application, you might want to associate a timeout with your
WinJS.xhr request. When you do that, if the request is still pending after the specified amount of time
elapses, the request is automatically canceled and raises an error that propagates back to the calling
application. Here’s the code you need to set up a timeout:

WinJS.Promise.timeout(3000,

 WinJS.xhr({ url: ... }).then(

 function (response) {

 // Process response

 },

 function (error) {

 rssReaderApp.alert(error.message);

 })

);

Basically, all you do is wrap your WinJS.xhr call within a call to WinJS.Promise.timeout. The first
parameter sets the expected timeout (in milliseconds); the second parameter is your call to WinJS.xhr.
Note that if the request fails because it times out, then the error object you receive has the message
property set to a generic message you can display directly to users, in this case, just “Canceled”
(see Figure 11-3).

FIGURE 11-3 A timed-out request.

 CHAPTER 11 Working with remote data 271

A look at the application’s manifest
All Windows Store application projects include a manifest file. So far, you haven’t needed to deal with
the manifest. However, when your app needs special capabilities, such as the ability to make HTTP
requests over the Internet, the manifest becomes important. So let’s take a look at it.

Locate the file package.appxmanifest in your project’s folder and open it. Next, select the
 Capabilities tab. If you do that for the sample RssReader project you have been working on in this
chapter, you should see the screen shown in Figure 11-4.

Each capability listed represents an action that your application may be able to perform when
 running on a Windows 8 system. The key point here is that for all unchecked capabilities, the
 Windows 8 runtime will restrict your application from invoking any application programming
 interface (API) that relates to those capabilities. As you can see in Figure 11-4, you must check the
Internet Client capability for the WinJS.xhr object to function properly.

FIGURE 11-4 The manifest file of the sample project.

Now, try disabling the Internet Client capability and running the RssReader sample application. The
application compiles and deploys successfully to the device. However, it doesn’t produce any visible
effect—no error messages, no crashes, and no failure. What’s going on? Quite simply, the Windows 8
runtime system blocked any call that required an explicitly declared capability.

272 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Important The lesson you should learn from this is that if at some point you code a feature
and it just doesn’t work, without any apparent reason, check to make sure that you have
declared the appropriate capability for each Windows 8 API your feature requires. Note also
that in Microsoft Visual Studio 2012, the Internet Client capability—the minimum capability
required to make WinJS.xhr work—is the only capability turned on by default.

parsing and displaying downloaded data
At this point, you know everything you need to place a successful call to a remote HTTP endpoint and
grab some data. The next step is to do something significant with that data. In this exercise, you will
call into the Google News service to download the latest news as an RSS feed. Next, you will parse the
returned string into a list of items and use them to populate a list view.

extending the rSS reader application
Before you turn your attention to parsing RSS data, some changes to the user interface of the
 application are in order. To make those changes, first open default.html and enter the following
markup:

<h1>RSS Reader (CH11)</h1>

 <div id="newslist" data-win-control="WinJS.UI.ListView">

 </div>

<div id="splitView">

 <div id="titleDetail"></div>

 <div id="pubDateDetail"></div>

 <div id="categoryDetail"></div>

 <div id="descriptionDetail"></div>

</div>

The DIV element named newslist is the ListView component that will contain all the downloaded
news. The DIV element named splitView is where you’ll provide a preview of a selected news item.

Another important piece of markup to add is the HTML template for the news. Before you can
write this template, however, you must have a clear idea of what you’re getting from the HTTP
 endpoint and how you intend to transform that content into usable data.

parsing the rSS content
Open the rssReaderApp.js file, select the rssReaderApp.init function, and edit it as shown below:

WinJS.xhr({ url: rssReaderApp.Feed }).then(

 function (response) {

 rssReaderApp.parseFeed(response);

 },

 CHAPTER 11 Working with remote data 273

 function (error) {

 rssReaderApp.alert("A download error occurred.");

 }

);

 The rssReaderApp.parseFeed function will receive whatever content the remote URL returns
and will attempt to transform it into a format usable by the application. It should be clear that if
 something goes wrong with the download operation, then the control passes to the error function.
This means that if the rssReaderApp.parseFeed function gets invoked, it actually has some data to
work with.

The primary responsibility for the rssReaderApp.parseFeed function is to ensure that the data it
received is in a format it can handle. Because you are downloading RSS data, and because RSS is an
XML format, this is a good starting point for the parseFeed function.

rssReaderApp.parseFeed = function (response) {

 if (response.responseXML == null) {

 rssReaderApp.alert("Invalid data");

 return;

 }

 // More action here ...

}

The response received from the server is encapsulated in the object passed to the function. If
received data can be rendered as an XML document object model, then the responseXML property
will not contain null, and control will pass to the code you will write next to query for the various RSS
elements.

An RSS feed follows the schema shown below:

<rss ...>

 <channel ...>

 <item>

 <title> ... </title>

 <link> ... </link>

 <guid> ... </guid >

 <description> ... </description >

 <category> ... </category>

 </item>

 ...

 </channel>

</rss>

274 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

In your parser, the first thing you want to do is select all the item elements and then loop through
them to extract specific information, such as the title, description, a link to the source, and perhaps a
category. The following code selects all the item elements from the entire XML document.

var items = response.responseXML.querySelectorAll("rss > channel > item");

The query syntax is nearly identical to the CSS query syntax you discovered in Chapter 3, “Making
sense of CSS”: it means “get me all the elements named item that are children of the rss and channel
elements.” Next, you create a for-each loop and work on each item individually. As an example, the
following code shows how to retrieve the title of the first published news item.

var title = items[0].querySelector("title").textContent;

The final problem to solve, as far as parsing is concerned, is determining where you will store
parsed data. Ideally, you might want to gather information in an easy-to-manage array that you can
then bind to the list view. Here’s the final version of the code for the parser:

rssReaderApp.parseFeed = function (response) {

 if (response.responseXML == null) {

 rssReaderApp.alert("Invalid data");

 return;

 }

 var items = response.responseXML.querySelectorAll("rss > channel > item");

 for (var n = 0; n < items.length; n++) {

 var newsElement = {};

 newsElement.title = items[n].querySelector("title").textContent;

 newsElement.link = items[n].querySelector("link").textContent;

 newsElement.guid = items[n].querySelector("guid").textContent;

 newsElement.pubDate = items[n].querySelector("pubDate").textContent;

 newsElement.description = items[n].querySelector("description").textContent;

 // Check category

 var category = "[No category]";

 if (items[n].querySelector("category") != null)

 category = items[n].querySelector("category").textContent;

 newsElement.category = category;

 RssReader.Items.push(newsElement);

 }

}

There are a couple of things to note. First, if you’re working with one specific RSS feed then you can
adapt your code to the expected format. If you instead plan to write a rather generic RSS Reader that
users can configure to get data from a variety of different sources, then you should pay attention to
each and every piece of data you try to access. For example, you’ll find the category node in the Google

 CHAPTER 11 Working with remote data 275

News feed, but many other RSS feeds omit the category node. To avoid runtime exceptions, you should
check to make sure that the category node exists before attempting to read it programmatically. To
stay on the safe side, you might also want to extend such a check to any node you attempt to read
 generically from an RSS feed. You never know what you will really get from web servers!

The second thing to notice in the preceding code is the RssReader.Items collection, which stores
all the parsed news items. In the exercises you completed in past chapters, you always managed data
binding programmatically. In other words, you always wrote some script code to bind a collection of
data to a Windows 8 ListView object, or to any other bindable user interface components.

But in this exercise you’ll do something different. You can also create data bindings declaratively,
at design time. This is where the RssReader object comes into play. You define this object at the top of
the rssReaderApp.js file, as shown below:

WinJS.Namespace.define("RssReader", { Items: new WinJS.Binding.List() });

The RssReader object is given a property named Items initialized to an empty binding list. During
the loop, the parser just adds news items to the RSSReader object’s Items collection. Subsequently, the
RssReader.Items object will become the data source for the ListView you created in the user interface.

Note You can code data binding either programmatically or declaratively; it’s fully
 functional either way. The choice between programmatic and declarative data binding is
primarily a matter of personal preference.

Mapping an rSS feed item to the user interface
Now you’re ready to map the news content to the HTML template which will render items within the
ListView. Here’s a sample HTML template:

<div id="newsItemTemplate"

data-win-control="WinJS.Binding.Template" style="display: none;">

 <div class="listItem">

 <div id="titleDiv" data-win-bind="innerText: title"></div>

 <div id="categoryDiv" data-win-bind="innerText: category"></div>

 <div id="pubDateDiv" data-win-bind="innerText: pubDate"></div>

 </div>

</div>

As you can see, the template grabs data from title, category, and pubDate properties of the bound
news object. You’re almost done. The final step consists of binding the ListView itself to its data
source. You do this declaratively in the default.html file through the data-win-options attribute.

<div id="newslist"

 data-win-control="WinJS.UI.ListView"

276 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 data-win-options="{ itemDataSource: RssReader.Items.dataSource,

 itemTemplate: newsItemTemplate,

 layout: {type: WinJS.UI.ListLayout} }">

</div>

At this point, if you compile and run the sample project you should see something similar to
Figure 11-5.

FIGURE 11-5 The RSS Reader sample application in action.

Drilling down into data
In previous chapters, you saw how to make any item displayed within a ListView clickable, which can
result in more data being presented to the user, in a “drill-down” process. As shown in Figure 11-5, so
far only the title, publication date, and category are displayed to the user. But what if you want to give
users a preview of the news content, or let them navigate to the actual source of the content? Sure,
you could add more UI elements and bind them within the list view, but that would take extra screen
space. Instead, you can let users drill down when they want more information. To do that, you need
to make the ListView items clickable, and then you need to find a way to show at least the description
field of the downloaded news.

 CHAPTER 11 Working with remote data 277

Making any displayed news item clickable
The first step in taking control of a user-click of a displayed news item will look familiar if you have
completed all the exercises in previous chapters. Edit the options for the ListView to configure direct
selection on tap behavior and enable single selection:

<div id="newslist"

 data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemDataSource: RssReader.Items.dataSource,

 itemTemplate: newsItemTemplate,

 layout: {type: WinJS.UI.ListLayout},

 selectionMode: 'single',

 tapBehavior: 'directSelect' }">

</div>

Next, in the rssReaderApp.js file, register a handler for the itemInvoked event of the ListView object.

rssReaderApp.init = function () {

 var listview = document.getElementById("newslist");

 listview.addEventListener("iteminvoked", rssReaderApp.preview);

 // Rest of the code here

 ...

}

Finally, you get to write the code that displays the news description.

Displaying raw HTML
Depending on the RSS feed you have retrieved, you may receive plain text or rich HTML as the news
description. You might decide to sanitize the content, removing and/or escaping any HTML tags you
encounter in the text. To do so, you pass the description to a function that returns a clean string.
 Alternatively, you might decide that you want to display rich HTML, especially when the platform—
like the Windows 8 platform—gives you full access to the rendering capabilities of a web browser.
The primary reason for making a decision between the two approaches is how much you trust the
RSS provider and the overall level of security of the platform. If you were, for example, writing a
website that retrieves data from a source provided by a user, you should be warned in advance: don’t
 display raw HTML! In contrast, if you’re getting data from a single and well-known RSS provider in the
context of a Windows 8 application, showing potentially unsafe HTML is definitely doable. Here’s the
code to preview the selected news:

rssReaderApp.preview = function (e) {

 var index = e.detail.itemIndex;

 var currentArticle = RssReader.Items.getAt(index);

 var amended = currentArticle.description;

 amended = amended.replace("src=" + '"//', "src=" + '"http://');

278 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 document.getElementById("titleDetail").innerHTML = currentArticle.title;

 document.getElementById("pubDateDetail").innerHTML = currentArticle.pubDate;

 document.getElementById("categoryDetail").innerHTML = currentArticle.category;

 document.getElementById("descriptionDetail").innerHTML = amended;

}

You first get the index of the selected item and retrieve the news it refers to. At this point you set
the innerHTML property of the HTML element that is expected to contain the description of the news,
as well as some other context information such as publication date and category. When you provide
the news item preview you set the elements of the splitView DIV you created earlier in the exercise.

The description of the news you get from the Google News feed usually contains IMG tags. For
some reason the URL to these images is missing the http:// prefix, which causes Windows 8 to be
unable to render the image. A simple string replace operation does the trick, as you can see in the
preceding code. Figure 11-6 shows the final result.

FIGURE 11-6 The final version of the RSS Reader application, with a preview for a selected news item.

Working with JSON data

Another common scenario for Windows Store applications involves downloading data from services
that expose JavaScript Object Notation (JSON) data rather than RSS. Usually, web services make their
content available in a variety of formats, the most common of which are XML (and RSS in particular)
and JSON. You already worked with the WinJS API for JSON in a previous chapter. In Chapter 10,
”Adding persistent data to applications,” you saved application data to JSON and read it back later.
In that example, you were entirely responsible for the full data cycle—serialization, persistence, and
deserialization.

 CHAPTER 11 Working with remote data 279

However, when you get your JSON data from a remote source, you can only control the
 deserialization portion of the full data cycle. Unfortunately, this doesn’t mean that you need to do
only half the work. Although commonly used and close to a de facto standard state, JSON is not an
exact science. As you’ll see in this exercise, there’s always the risk that you will get invalid JSON. When
that’s the case, you’re responsible for fixing it.

Laying out a Flickr viewer
In this exercise, you’ll build an application that retrieves and displays public photos from the
 popular website Flickr. Links to photos, and related information such as author and description are
 downloaded as a JSON string and then rendered using a ListView component.

Setting up the Flickr Viewer app
Create a new Blank App project and name it FlickrPhotoViewer. After adding the usual new Pages
folder with header.html and footer.html files (as you did in previous exercises), open up the default.js file
and add the usual handler for the onready event. Using that method, you can control the application’s
initialization, as shown below:

app.onready = function (args) {

 flickrApp.init();

};

The next step is to add a new JavaScript file to the project named flickrApp.js. Initially, the file will
contain only the following:

var flickrApp = flickrApp || {};

flickrApp.init = function () {

 // More to go here

}

Now turn your attention to the user interface of the application and open default.html. Make sure
it contains the following markup:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Flickr Photo Viewer</title>

 <!-- WinJS references -->

 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet" />

 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>

 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

280 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 <!-- Flickr Photo Viewer references -->

 <link href="/css/default.css" rel="stylesheet" />

 <script src="/js/default.js"></script>

 <script src="/js/flickrApp.js"></script>

</head>

<body>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/header.html'}"></div>

 <h1>Flickr Viewer (CH11)</h1>

 <input type="text" placeholder="Subject" id="subject" value="" />

 <button id="buttonSearch">Search</button>

 <div id="picturesList" data-win-control="WinJS.UI.ListView">

 </div>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/footer.html'}"></div>

</body>

</html>

In addition to the usual markup, the page contains a Windows 8 ListView bound to a DIV element
named picturesList. An input text box and a button have been added to let users of your application
type in keywords to select corresponding pictures.

The Search button needs a click handler; add it in the flickrApp.init method, as shown below:

flickrApp.init = function () {

 document.getElementById("buttonSearch")

 .addEventListener("click", flickrApp.searchClick);

}

The click handler will be responsible for placing the HTTP call to the Flickr web service and
 processing the JSON data it receives in response.

Looking at the Flickr public feed
In this example, you will access the public photo feed of Flickr, which requires neither authentication,
nor any Flickr-specific application ID. All you need to know here is the URL to call. As in the first
 exercise of this chapter, you save it to a member on the global flickrApp object:

flickrApp.Source = "http://api.flickr.com/services/feeds/photos_public.gne" +

 "?tagmode=any&format=json&nojsoncallback=1&tags='{0}'";

 CHAPTER 11 Working with remote data 281

Table 11-2 provides a brief explanation of the URL parameters.

TABLE 11-2 Query string parameters for the Flickr public web service

Parameter Description

tagmode This parameter can take the value all or any; and indicates whether any selected photos must
match all or just any of the specified tags.

format Set this parameter to json if you want to get a JSON response. You can also specify that the call
should return RSS or a variety of other formats as listed here: http://www.flickr.com/services/
feeds/docs/photos_public.

nojsoncallback In a Windows Store application, this parameter is required and must be set to 1. You don’t need
this parameter if you’re calling the Flickr API from within a JavaScript web application. It is a
setting that relates to how the host environment actually places the call to the remote site.

tags You can set this parameter to a comma-separated list of keywords to match appropriate
 photos.

As you may have noticed, the flickrApp.Source property is set to a string that contains a
 placeholder—the {0} item. In .NET programming, this type of notation is used to format strings
 dynamically. The idea is that when the user clicks the Search button, the handler will read the typed
tags and insert them in the URL string, replacing the placeholder.

The {0} notation is common in .NET Windows programming, but it isn’t in JavaScript. So you need
to create a helper function that does the replacement. This is interesting because it shows you a
 powerful JavaScript technique—manipulating object prototypes.

preparing the Flickr UrL
It is advisable that you create yet another JavaScript file; call it helpers.js. Add a reference to that file
in your default.html file and make sure that the helpers.js reference precedes the flickrApp.js reference.
Here’s the initial content for helpers.js:

//

// Applies the .NET {n} convention to format strings

//

String.prototype.format = function () {

 var theString = this,

 count = arguments.length;

 while (count--) {

 theString = theString.replace(

 new RegExp('\\{' + count + '\\}', 'gm'), arguments[count]);

 };

 return theString;

};

282 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The code adds the format function to the prototype of the JavaScript’s native String object. By
 doing this, any string manipulated under the scope of the helpers.js file will expose an additional
 format method. After you reference helpers.js, you can write the following code:

flickrApp.searchClick = function () {

 var tags = document.getElementById("subject").value;

 flickrApp.download(tags);

}

flickrApp.download = function (tags) {

 // Add tags to the Flickr URL

 var url = flickrApp.Source.format(tags);

 // Get photos

 WinJS.xhr({ url: url }).then(function (json) {

 // Parse the JSON feed here

 });

}

In the click handler of the Search button, you get any text typed into the input field and pass it
down to the newly created download function. Internally, this function composes and invokes the
Flickr URL via WinJS.xhr. Note that if you pass an empty tag list, you will still get some photos in
 response; that’s why it is not strictly required that you check the tags variable for null or empty.

Getting the JSON data
You use the WinJS.xhr function to download the JSON string that describes selected photos. Using the
WinJS.xhr function is the same as in the previous exercise. You define two functions: one that executes
when the download completes successfully and one when the request fails, and pass them to the then
method on the promise object returned by WinJS.xhr.

WinJS.xhr({ url: url }).then(

 function (response) {

 flickrApp.parseFeed(response.responseText);

 },

 function (response) {

 var message = "Error downloading photos.";

 if (response.message != null)

 message += response.message;

 flickrApp.alert(message);

 }

);

The then method passes to its functions an object that represents the response retrieved from
the remote source. To get the plain text contained in the body of a JSON response, query the
 responseText property.

 CHAPTER 11 Working with remote data 283

The heart of the Flickr application is inside the body of the flickrApp.parseFeed method. Here’s its
implementation:

flickrApp.parseFeed = function (json) {

 var pictures = JSON.parse(json);

 for (var i = 0; i < pictures.items.length; i++) {

 var pictureElement = {};

 pictureElement.photoUrl = pictures.items[i].media.m;

 // Bind to the listview

 ...

 }

}

The JSON string you receive has the following form:

{

 "title": "Recent Uploads tagged tennis",

 "link": "http://www.flickr.com/photos/tags/tennis/",

 "description": "",

 "modified": "2012-11-30T07:56:42Z",

 "generator": "http://www.flickr.com/",

 "items": [

 {

 "title": "...",

 "link": "http://www.flickr.com/photos/craftydogma/8232121888/",

 "media": {

 "m": http://farm9.staticflickr.com/8350/8232121888_9f762d7e5e_m.jpg

 },

 "date_taken": "2012-05-05T19:04:48-08:00",

 "description": "<p> ... </p>",

 "published": "2012-11-30T07: 56: 42Z",

 "author": "...",

 "author_id": "...",

 "tags": "tennis vintage photo"

 }

]

}

To access the URL of the photo, you need the following expression:

pictureElement.photoUrl = pictures.items[i].media.m

You can gather the photo URL, as well as other information such as date and description, into a
handy data structure—the pictureElement object of the sample above.

http://farm9.staticflickr.com/8350/8232121888_9f762d7e5e_m.jpg

284 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Adding pictures to the user interface
To display the retrieved pictures, you can use a Windows 8 ListView. In default.html you already have
a DIV element bound to the ListView component. The next step consists of binding the ListView to a
data source and defining an item template.

Because you just want to display pictures, the HTML item template can be simple, as shown below:

<div id="picturesItemTemplate"

 data-win-control="WinJS.Binding.Template" style="display: none;">

 <div class="listItem">

 </div>

</div>

The src attribute of the IMG element is bound to the photoUrl property of the bound data object.
You add the template at the beginning of the body for the default.html page.

As you did in the first exercise of this chapter, you also define a binding list object at the top of the
flickrApp.js file:

WinJS.Namespace.define("FlickrFeed", { Pictures: new WinJS.Binding.List() });

You populate the list during the enumeration of the JSON content.

flickrApp.parseFeed = function (json) {

 var pictures = JSON.parse(json);

 for (var i = 0; i < pictures.items.length; i++) {

 var pictureElement = {};

 pictureElement.photoUrl = pictures.items[i].media.m;

 // Add the object to the listview

 FlickrFeed.Pictures.push(pictureElement);

 }

}

Finally, you bind the ListView to the FlickrFeed.Pictures list. In default.html you add the following
markup:

<div id="picturesList" data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemDataSource: FlickrFeed.Pictures.dataSource,

 itemTemplate: picturesItemTemplate,

 layout: {type: WinJS.UI.GridLayout} }">

</div>

 CHAPTER 11 Working with remote data 285

Figure 11-7 displays the output of the application, if all goes well.

FIGURE 11-7 The Flickr Viewer application in action.

enhancing the application
As mentioned, JSON is not an exact science. So it’s possible to get a JSON string that appears to be
invalid. If the JSON.parse method can’t parse the downloaded text, your application just throws an
exception, as in Figure 11-8.

FIGURE 11-8 The Flickr Viewer dealing with invalid JSON content.

286 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Dealing with invalid JSON
When you detect invalid JSON, it’s not immediately obvious who might be the source of the problem.
The only fact you know is that the parser failed—but why? Was it because the parser has a bug? Or is
the JSON provided to the parser invalid? While developing the Flickr Viewer app you faced the error
window shown in Figure 11-8 quite a few times, often with no apparent reason. Sometimes, by simply
changing the tag the application would work just fine.

When the parser complains about invalid JSON, the first thing to do is to make sure that the JSON
content is truly valid. As shown in Figure 11-9, you can validate JSON text by copying it into the
 following website: http://jsonlint.com.

FIGURE 11-9 The JSONLint website.

But how can you grab the text of the JSON you’re getting as a response, so you can paste it into
the editor of JSONLint?

In Visual Studio, you place a breakpoint right onto the line that parses the content (see Figure 11-10).
The breakpoint halts execution on that line, thus giving you a chance to inspect the runtime context.

http://jsonlint.com

 CHAPTER 11 Working with remote data 287

FIGURE 11-10 Placing a breakpoint to inspect the content of the json variable.

When execution has paused on the breakpoint, you just move your mouse over the json variable.
A possibly very wide tooltip appears. If the text is fairly long, inspecting it from the tooltip may not be
easy. As an alternative, click on the down arrow icon that appears right before the text. When you do
that, you are offered a better option: to select a text visualizer (see Figure 11-11).

FIGURE 11-11 Inspecting the content of the json variable into a comfortable visualizer.

The text visualizer is a plain text editor where you can comfortably inspect the content of the json
variable—the text you’re going to pass to the JSON parser and that is known to generate an “invalid
character” exception. You can easily select that text and copy it to the clipboard. To copy the text to
the clipboard, you can either type Ctrl+C, or right-click the text and select Copy (see Figure 11-12).

288 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 11-12 The text visualizer to copy the JSON text to the clipboard.

With the JSON copied to the clipboard, you can go to the JSONLint website mentioned earlier,
paste the text in the editor, and validate it.

Fixing invalid JSON
It turns out that the Flickr web service doesn’t always return valid JSON that can be successfully
 validated against the JSONLint validator. At the same time, any JSON that JSONLint validates is
 correctly parsed back by the JSON.parse function in Windows 8.

One issue you’ll discover is that the Flickr service doesn’t always handle the single quote character
found in some descriptions correctly. For example, consider the following text:

Wimbledon it ain\'t

This text appears in the description of some photos. To make it pass the JSON validation, you need
to double escape the single quote, so the string looks like this:

Wimbledon it ain\\'t

You can fix this problem quickly and effectively by introducing yet another extension to the String
prototype. Open the helpers.js file again and add this code:

String.prototype.doubleEscapeSingleQuotes = function () {

 var theString = this;

 if (theString != null && theString != "") {

 return theString.replace(/\'/g, "\\'");

 } else {

 return theString;

 }

}

 CHAPTER 11 Working with remote data 289

It is important to note that simply calling the replace function doesn’t work, because the replace
function only replaces the first occurrence of the matching string. You need to wrap the string to
replace it in a regular expression (as shown below) and explicitly add the g qualifier to make it work
on the entire string.

/string-to-replace/g

The code that parses the JSON becomes

flickrApp.parseFeed = function (json) {

 var amendedText = json.doubleEscapeSingleQuotes();

 var pictures = JSON.parse(amendedText);

 for (var i = 0; i < pictures.items.length; i++) {

 var pictureElement = {};

 pictureElement.photoUrl = pictures.items[i].media.m;

 // Add the object to the listview

 FlickrFeed.Pictures.push(pictureElement);

 }

}

With this added code, you should be able to correctly parse Flickr JSON in every case you’ve
 encountered so far.

Displaying a different set of photos
To complete the exercise, you might want to add a second button to clear the currently displayed
photos. The function you’re going to create is also useful for silently clearing the view when the user
starts a new search. Note that without a “clear” step, any new search will just append photos to the
existing list.

To add the Clear button, add the following markup to the default.html page:

<button id="buttonClear">Clear</button>

Next, in flickrApp.init, you register a handler for the button’s click event.

flickrApp.init = function () {

 document.getElementById("buttonSearch")

 .addEventListener("click", flickrApp.searchClick);

 document.getElementById("buttonClear")

 .addEventListener("click", flickrApp.clearClick);

}

290 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

And finally, you get to write the code for the handler and to clear up photos.

flickrApp.clearClick = function () {

 flickrApp.clear();

}

flickrApp.clear = function () {

 // Zero the length of the list

 FlickrFeed.Pictures.splice(0, FlickrFeed.Pictures.length);

}

You also might want to place a call to flickrApp.clear method in the download function just before
placing the remote call.

flickrApp.download = function (tags) {

 // Add tags to the Flickr URL

 var url = flickrApp.Source.format(tags);

 // Clear existing photos (if any)

 flickrApp.clear();

 // Get new photos

 WinJS.xhr({ url: url }).then(...);

 };

With this final version, you can run as many searches as you want while displaying only the
most recently found photos, which is both less confusing for the user and also improves the overall
 application performance.

Summary

Being able to access data from a remote location via HTTP is a key feature for nearly every modern
application—especially for applications possibly deployed to a mobile device. In a Windows Store
application written with HTML and JavaScript, you perform HTTP access using the WinJS.xhr object.
In this chapter, you saw two exercises that showed how to make a query via HTTP to get remote data,
and consume the responses containing RSS and JSON data. Although this chapter didn’t exhaust the
list of possible HTTP-related tasks, it definitely addresses the most common scenarios.

This chapter concludes the section of the book dedicated to basic aspects of Windows 8
 programming. In the next section, you’ll enter more advanced territory—dealing with devices and
sensors, Live tiles, and publishing. The next chapter is about programming against embedded devices
and sensors, such as GPS and webcams.

 291

Chapter 12

Accessing devices and
sensors

If you are interested, you never have to look for new interests. They come to you.
When you are genuinely interested in one thing, it will always lead to something else.

— Eleanor Roosevelt

Smartphones and tablets owe much of their success to the high quality of their sensors and internal
devices. If you go back to the early days of the iPhone, you may recall how astonished people were

with the now-mundane Flashlight application. That was essentially a toy app—though it had some
practical use. The assortment of devices and sensors you find on modern devices, such as a tablet
equipped with Microsoft Windows 8, is so rich as to enable developers to think and build completely
new types of applications.

As a Windows 8 developer you have access, even from a JavaScript-based programming
 environment, to a variety of Windows Runtime application programming interfaces (APIs) that give
you control of a range of sensors, including such things as a GPS, a light sensor, an accelerometer, and
a compass. In addition, a Windows Store application can gain access to devices both connected to the
computer or embedded in it. Typical examples are printers and the webcam.

In this chapter, you’ll learn how to use the webcam programmatically, how to print content, and
how to work with one of the most useful sensors—the GPS component that returns the current
 location of the user.

Working with the webcam

Today almost all computers and devices come with a high-resolution webcam. A webcam is typically
employed by built-in programs to support video conferencing and video chat. It is also common
for applications to leverage the webcam to take instant pictures of the user. From a programming
 perspective, the webcam is just like any other piece of hardware. As a developer, you learn about

http://www.quotationspage.com/quote/27616.html

292 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

its public API, apply the correct calls, and get the behavior you expect. In the 1990s, working with
hardware was often a difficult and challenging task. Thankfully, we now live and code in a different
century! As an example, in the next exercise, you’ll build a Windows Store application that takes
instant pictures of the user.

Capturing the webcam stream
As usual, you start by creating a new Windows 8 project using the Blank App template. Next, you
create a new Pages folder and add common files such as header.html and footer.html, as you’ve seen
repeatedly in the preceding chapters. Edit the default.html and default.css files appropriately for this
application, as described earlier in this book. (This work is required only to ensure that all applications
have a consistent look and feel.)

Setting up the project
More importantly, open up the default.js file and add the following bootstrapping code:

app.onready = function (args) {

 instantPhotoApp.init();

};

You should know by now that the init function will be invoked when the application is fully loaded
and ready to respond to the user’s commands. However, you must create the init function. As you’ve
done quite a few times already in past exercises, add a new JavaScript file to the project under the Js
folder and name it instantPhotoApp.js.

The name of the JavaScript file is actually unimportant, in the sense that whatever name you use
can work. However, it’s probably not a good idea to name a project file after your favorite pet. The
convention used in this book is to name the main JavaScript file of the application after the name of
the project, plus an App suffix.

Here’s the initial content of the JavaScript instantPhotoApp.js file.

var instantPhotoApp = instantPhotoApp || {};

instantPhotoApp.init = function () {

 // To be done

}

At this point you should have a working but empty application. You’ll add some significant markup
to arrange the user interface.

In default.html, add the following chunk of HTML code:

<h1>Instant Photo (CH12)</h1>

<div class="center">

 CHAPTER 12 Accessing devices and sensors 293

 <button id="buttonShoot" class="horizontalBtn">Take a picture</button>

</div>

Basically, the webcam application consists of a button that triggers the webcam and an IMG
 element where users will view the captured image. The final preliminary step is to add a handler for
the click event for the Take A Picture button. Open the instantPhotoApp.js file and type the following
code:

instantPhotoApp.init = function () {

 document.getElementById("buttonShoot")

 .addEventListener("click", instantPhotoApp.takePicture);

};

instantPhotoApp.takePicture = function () {

 // Some more code here

}

Now, you’re all set and ready to tackle the webcam API.

Checking the webcam capability
Code is not allowed to freely access the webcam without explicit user permission. For this reason, to
give your app a chance to successfully use the webcam you must first declare your intention to use it.

As shown in Figure 12-1, double-click the manifest file you have in the project and select the
 Capabilities tab from the subsequent view.

FIGURE 12-1 Enabling the capability that gives your code the ability to access the webcam programmatically.

294 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Note that the single Webcam capability is sufficient for the purposes of writing an instant photo
application. However, if you were writing an application that uses the webcam to capture a video
stream, you would probably also want to add the Microphone capability. The Webcam capability
alone provides access to the video stream, but not to the audio stream.

Configuring the webcam
The Windows 8 API provides a common dialog to deal with the webcam. All you need to do is get an
instance of the CameraCaptureUI object and then launch it.

var dialog = new Windows.Media.Capture.CameraCaptureUI();

The CameraCaptureUI object deals with photos and video, so it exposes two distinct properties by
which you can configure video and photo settings: photoSettings and videoSettings. For the purpose
of this exercise, you’ll focus only on photoSettings.

The photoSettings object offers a few properties to define the size (in pixels) of the resulting image,
its aspect ratio, and the file format in which you want to store the image. Here’s what you need to do
to ensure a 16:9 aspect ratio and store the image bits as a JPEG image.

var dialog = new Windows.Media.Capture.CameraCaptureUI();

var aspectRatio = { width: 16, height: 9 };

dialog.photoSettings.croppedAspectRatio = aspectRatio;

dialog.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.jpeg;

If you don’t like the JPEG format, you can choose the PNG format instead:

dialog.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.png;

In general the JPEG format results in a slightly more compact file that requires fewer resources and
less time to transfer over the wire, and it also takes less space when stored on disk. In contrast, the
PNG format ensures a somewhat better image quality; the tradeoff is a larger file size—a PNG image
is usually nearly double the size of a JPEG image.

Accessing the webcam programmatically
After you have configured the webcam, you’re ready to launch the dialog that will guide the user to take
the picture. The following listing shows the complete code you need to have in instantPhotoApp.js to
capture an image. To be precise, the listing below doesn’t yet include the code to display the captured
image.

instantPhotoApp.takePicture = function () {

 try {

 var dialog = new Windows.Media.Capture.CameraCaptureUI();

 var aspectRatio = { width: 16, height: 9 };

 CHAPTER 12 Accessing devices and sensors 295

 dialog.photoSettings.croppedAspectRatio = aspectRatio;

 dialog.photoSettings.format = Windows.Media.Capture.

 CameraCaptureUIPhotoFormat.jpeg;

 dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .then(

 function (file) {

 // More code here

 },

 function (err) {

 // User canceled the operation.

 }

);

 }

 catch (err) {

 // Show some error message.

 }

}

As you can see, the core of the capture operation is the captureFileAsync method exposed by the
CameraCaptureUI object. The method takes just one argument that controls whether you want to use
the camera to take a picture or shoot a video.

dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo).then(...);

The method works asynchronously, so to work on its results you need to arrange a JavaScript
then or done promise that receives the byte stream of the captured image. Figure 12-2 shows the
 application in action.

FIGURE 12-2 The webcam application ready to take a picture.

296 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

When a user runs the application for the first time, they must provide permission to use the
webcam. Figure 12-3 demonstrates a security feature of Windows 8: the user must explicitly enable
the application to use the webcam. If the user does not grant permission, then the application won’t
work.

FIGURE 12-3 Granting permission to use the webcam.

Figure 12-4 shows the camera in action after clicking the Take A Picture button.

FIGURE 12-4 The webcam in action.

 CHAPTER 12 Accessing devices and sensors 297

To actually take a picture, you tap or double-click the screen. Before doing so, users can further
tweak the camera options, or even set a timer. The Back button, visible at the top-left corner of the
screen, provides a way to return to the application without doing anything. When you click the Back
button, the app still considers the operation as completed successfully, except that no file will be
passed to the promise methods.

After tapping to take the picture, the dialog gives you a chance to crop the image or retake the
picture if you just don’t like some aspect of it (see Figure 12-5).

FIGURE 12-5 Selecting a portion of the picture.

Note The webcam displayed by the CameraCaptureUI dialog is a full-screen camera.
Windows 8 also provides an alternative API that gives you full control over the streaming
done by the camera. By using this more advanced API, you can create custom views and
apply filters to captured data.

The captureFileAsync method returns control to the calling application as soon as the capture
operation completes. If a photo was taken, the promise passes an object that references the captured
item. Now you need to decide what you want to do with the captured item.

processing captured items
There are two things you probably want to do with the stream captured by the webcam: display the
image for the user and save the image to some permanent location, such as the Pictures library.

298 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Displaying the captured picture
The following code shows what you need in order to display the captured picture via an IMG element
in the main page of the application.

dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .then(function (file) {

 if (file) {

 var viewer = document.getElementById("imgPhoto");

 viewer.src = URL.createObjectURL(file);

 } else {

 // No photo captured, but no error returned

 }

 });

To display a picture in an IMG element—the only known way to display pictures in a WinJS
 application—you need a URL to reference; but the captured item is returned to you as the handle
to a Windows 8 storage file. You need to invoke the URL.createObjectURL helper function that was
 specifically created to return a usable URL for blobs, media objects, or streams. Figure 12-6 shows the
main interface of the application displaying a captured photo.

FIGURE 12-6 The captured image displayed within the application.

Displaying the captured photo is great, but without some more code, the photo is lost completely
as soon as you exit the application. Next you’ll make the application a bit more sophisticated, letting
it save images as well as take them.

Adding the pictures Library capability
A Windows Store application runs in a protected environment, often referred to as a “sandboxed
 environment.” That term can mean many things, but for the purposes of this example, it means that
the application is not free to access any physical disk location for reading and/or writing.

 CHAPTER 12 Accessing devices and sensors 299

You’ve seen in past chapters that a Windows Store application can save any data in its own
 reserved space. While this option was more than sufficient for the TodoList application you built, it
is arguably not a truly viable option for the Instant Photo sample application. The output produced
by Instant Photo consists of content that the user likely would want to make accessible to other
 applications.

To achieve this goal, the best option is to save photos to the Pictures folder. Doing that requires
you to declare yet another capability. So open up the application manifest again, select the
 Capabilities tab, and check Pictures Library, as in Figure 12-7.

FIGURE 12-7 Declaring the Pictures Library capability.

You may want to let users create a specific subfolder under their Pictures folder to hold all
the pictures they take with the Instant Photo app. Alternatively, you might want to do that
 programmatically. That’s what you’ll do next.

Creating a subfolder for photos
An ideal time to create the Instant Photo subfolder is the first time the application is run on a given
device. Add the following code to the init method in the instantPhotoApp.js file.

var picturesFolder = Windows.Storage.KnownFolders.picturesLibrary;

picturesFolder.createFolderAsync("Instant Photo",

 Windows.Storage.CreationCollisionOption.

 openIfExists)

 .then(function (folder) {

 instantPhotoApp.customFolder = folder;

 });

300 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

You should save a reference to the newly created folder somewhere so that you can retrieve it later
when you actually store the picture. To do that, declare a new global property on the application root
object. Edit your instantPhotoApp.js file so it begins as shown below:

var instantPhotoApp = instantPhotoApp || {};

instantPhotoApp.customFolder = null;

The net effect of the code is that any time the Instant Photo application is launched, it checks
whether the Instant Photo folder already exists within the Pictures Library; if it doesn’t exist, the
 application creates it. In either case, the end result is that the app stores a reference to the folder
object in the newly created customFolder property.

Saving a copy of the picture
The webcam capture dialog box returns a file reference to the captured stream. In terms of the
 Windows 8 API, the then promise triggered by the camera dialog receives a StorageFile object. You
first encountered this object in Chapter 10, “Adding persistent data to applications.”

A StorageFile object has a handy method named copyAsync that copies the file to a given folder.
Therefore, to save the captured photo to the Pictures library, you need to add the following line to
the then promise right after you display the image.

// Here file is the storage object returned by the camera capture UI dialog

file.copyAsync(instantPhotoApp.customFolder);

Here’s the full code you need to run when the user clicks the button to take a new picture:

instantPhotoApp.takePicture = function () {

 try {

 var dialog = new Windows.Media.Capture.CameraCaptureUI();

 var aspectRatio = { width: 16, height: 9 };

 dialog.photoSettings.croppedAspectRatio = aspectRatio;

 dialog.photoSettings.format = Windows.Media.Capture.

 CameraCaptureUIPhotoFormat.jpeg;

 dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .then(function (file) {

 if (file) {

 var viewer = document.getElementById("imgPhoto");

 viewer.src = URL.createObjectURL(file);

 file.copyAsync(instantPhotoApp.customFolder);

 }

 }

 } catch (err) {

 // Show some error message

 }

}

 CHAPTER 12 Accessing devices and sensors 301

Figure 12-8 shows a few photos captured and then safely stored in the Instant Photo folder under
the Pictures library.

FIGURE 12-8 The Instant Photo folder.

Working with the printer

Even though the world is moving toward an increasingly digital and virtual future, printing a
 document is still an important task that has value despite the environmental considerations of print
media. For developers, printing has never been this easy; in prior years, developers had to contend
with many different drivers and settings.

Windows 8, however, makes printing as easy as possible. Printing takes only a few relatively
 standard steps from within JavaScript applications. You should note, though, that JavaScript
 applications have no access to a subset of more advanced capabilities, such as setting custom
options programmatically and printing specific pages.

For basic tasks, though, working with the printer from within Windows Store JavaScript
 applications is quick and easy. “Basic tasks,” means the ability to control the content and
template to be printed, and the ability to print context-specific pieces of data.

Here’s a new exercise that gives you some experience in printing, using some sample content.

The Print contract
In Windows 8, printing is ruled by the Print contract. A Windows Store application therefore supports
printing by registering for the Print contract. The Print contract tells the system that the application
supports printing, so that when users swipe from the right side of the screen to reveal the Charms bar,
they will find the list of available printers. Similarly, you may want to allow users to trigger a printing

302 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

task from the application’s user interface by, for example, clicking a button. When this happens, the
charms show up programmatically; the user can then select a printer and print.

Setting up the sample application
Before you focus on specific printing tasks, you need to set up the sample application. Create another
Windows Store project from the Blank App template and add the Pages folder with header.html and
footer.html files. Define the usual CSS styles in default.css. Finally, in default.js, add a handler for the
application’s onready event which will initialize the application.

app.onready = function () {

 printerApp.init();

}

You also add a new JavaScript file named, say, printerApp.js, and initialize the global application
object, as shown below.

var printerApp = printerApp || {};

As far as the user interface is concerned, you don’t need to do much for this application. You
just add a couple of buttons that print different content. Insert the following markup right after the
 opening tag of the BODY element:

<div id="main">

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/header.html'}"></div>

 <h1>Print-n-Go (CH12)</h1>

 <button id="buttonPrint1">Print template #1</button>

 <button id="buttonPrint2">Print template #2</button>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/footer.html'}"></div>

</div>

This markup contains an extra feature that you haven’t seen in previous exercises. The entire
 document tree that makes up the user interface is wrapped in a DIV element—the main element.
This surrounding DIV element doesn’t change the way the user interface looks, but it does make it
very easy to hide the entire UI with a single line of code. At this point, if you launch the application
you should see something like the image in Figure 12-9.

 CHAPTER 12 Accessing devices and sensors 303

FIGURE 12-9 The Print-n-Go application.

registering the Print contract
Most of the magic required to print content in Windows 8 happens during the initial phase of an
application. In fact, after registering the Print contract during initialization, you’re nearly all set. Note
that application initialization is only the preferred place where you could place the Print contract; you
could do that later in the application. All that really matters is that you must have the Print contract in
place before the user can invoke any printing functionality.

As usual for the exercises in this book, you have an init method on the main application object.
Here’s an implementation of the method that registers the Print contract:

printerApp.init = function () {

 var printManager = Windows.Graphics.Printing.PrintManager;

 var printView = printManager.getForCurrentView();

 printView.onprinttaskrequested = function (eventArgs) {

 var printTask = eventArgs.request.createPrintTask("Print-n-Go", function

 (args) {

 args.setSource(MSApp.getHtmlPrintDocumentSource(document));

 printTask.oncompleted = onPrintTaskCompleted;

 });

 };

 function onPrintTaskCompleted(eventArgs) {

 if (eventArgs.completion === Windows.Graphics.Printing.PrintTaskCompletion.

 failed) {

 printerApp.alert("Failed to print.");

 }

 }

}

Registering the Print contract essentially means invoking the getForCurrentView method on the
PrintManager system object. The returned view must be further configured with a handler for the
requested print task event. In other words, anytime a user requests a print task through the charms,
or anytime an app requests print services programmatically, the application must create a print task.

304 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

A print task has a name that will reference the job in the printer and is associated with some work
aimed at grabbing and formatting the content to print. In Windows 8, you always use a single line of
code to reference the code to print. More specifically, from within a WinJS application, you always
print the current HTML document displayed to the user. That’s just what the line below achieves.

args.setSource(MSApp.getHtmlPrintDocumentSource(document));

The next point to tackle is how you can ensure that the getHtmlPrintDocumentSource always gets
the right content from the document’s object model.

The printing user interface
Let’s put the whole topic of printing the content aside for a moment. The only way to print in
 Windows 8 is through the print dialog shown in Figure 12-10.

FIGURE 12-10 The print charms.

You select the printer of choice and then see another panel containing a preview of the page that
will be printed. As a JavaScript developer, you have no control over that displayed content. You’re solely
responsible for providing the content to preview and print. The preview window (see Figure 12-11) is
generated by the system and requires no extra code beyond the code you saw earlier.

As you can discern from Figure 12-11, if your intended purpose is to print the current content
of the screen you don’t need to do anything—just bring up the charms print dialog and go. More
 reasonably, though, you probably want to print only a subset of the content currently displayed on
the screen. Doing that requires a few tricks.

In essence, in Windows 8, and from a WinJS-based application, you want to print only some of
the HTML content from the currently displayed document. Printing plays by common browser rules,
which means that hidden content is not printed, and any visible content can be optionally styled for
print.

To print exactly the content you want at a given point, you need to arm yourself with print-only
style sheets and some extra code that hides the content you don’t want to print, leaving just the
 content that needs to go to the printer visible.

 CHAPTER 12 Accessing devices and sensors 305

FIGURE 12-11 Preview of the page being printed.

Printing context-specific content
Printing in Windows 8 is purposefully contextual; users expect to be able to print just what’s relevant
in the current state of an application at any time. This means that in a print-oriented application you
will want to keep screen and print content separated, giving you an easy way to switch from one to
the other.

Splitting content in subdocuments
In default.html, you already surrounded the main content of the page with an outermost DIV.
The purpose of this outermost DIV is to let you split any HTML document into two or more
 subdocuments: one for regular display and all the others for context-specific print purposes.

For this exercise, suppose you have two print templates to take care of. Add a couple of buttons to
print the two templates.

<button id="buttonPrint1">Print template #1</button>

<button id="buttonPrint2">Print template #2</button>

You define handlers for these buttons in the printerApp.init method in the printerApp.js file.

printerApp.init = function () {

 document.getElementById("buttonPrint1")

.addEventListener("click", printerApp.print1, false);

 document.getElementById("buttonPrint2")

.addEventListener("click", printerApp.print2, false);

 ...

}

306 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Finally, in default.html add a sibling DIV element for each print scenario you intend to support.
Here’s how:

<body>

 <div id="main">

 ...

 </div>

 <div id="print-template1">

 ...

 </div>

 <div id="print-template2">

 ...

 </div>

</body>

The user interface goes in the main DIV; content you want to be able to print goes in the other DIV
elements. You now need to ensure that when the application is running normally and not printing,
the print sections are hidden. Likewise, you want to hide the application UI content and display the
appropriate content when the application is going to print.

The print media
Web browsers have supported screen and print media for a long time. When you author an HTML
page, you can link distinct CSS style sheets for screen and print using the media attribute on the
STYLE and LINK elements. For example, the following code links the screen.css file when the page
is being displayed and automatically (and silently) switches to the print.css when the page is being
printed.

<link rel="stylesheet" href="screen.css" media="screen" />

<link rel="stylesheet" href="print.css" media="print" />

If you don’t specify the media attribute, it is assumed to have a value of all, meaning that the style
sheet will be applied in all cases.

In the current exercise, you want to hide the print-template1 and print-template2 sections in screen
mode; similarly, you want to hide the main section when the page is being printed. You can easily
achieve this using the media attribute.

To keep it as simple as possible, you’ll work with the STYLE element. The STYLE element allows you
to insert style information inline rather than referencing it from an external file.

<style media="print">

 #main {

 display: none;

 }

 CHAPTER 12 Accessing devices and sensors 307

</style>

<style media="screen">

 #print-template1 {

 display: none;

 }

 #print-template2 {

 display: none;

 }

</style>

The result is that the two print templates are hidden in screen mode, whereas the main template is
hidden in print mode.

preparing the document for printing
In a realistic Windows Store application, you may need to have several print templates ready. The
media attribute doesn’t allow you to indicate which print template is turned on so that you can
 intelligently hide portions of the document you don’t need to print. This means that you need some
code that is triggered by the user interface to programmatically hide print templates that don’t apply
to the current context. For example, consider the following markup in default.html:

<div id="print-template1">

 <h1 id="print-title1">Template #1</h1>

</div>

<div id="print-template2">

 <h1 id="print-title2">Template #2</h1>

</div>

When the application is in a state that requires printing the first template, you run the code below:

printerApp.preparePrint1 = function () {

 document.getElementById("print-template2").style.display = 'none';

 document.getElementById("print-template1").style.display = '';

 document.getElementById("print-title1").textContent = "Printing template #1";

}

Turned on automatically by the browser due to the print media attribute, the code hides the
second template programmatically when you intend to print the first template. At the same time, the
template is populated or updated with fresh content to better reflect the state of the application. At
this point, the print template is the only visible part of the document and consequently the only part
that will print.

308 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

In general, you need to have code similar to the following in order to handle click events on print
buttons in your application.

printerApp.print1 = function () {

 printerApp.preparePrint1();

 Windows.Graphics.Printing.PrintManager.showPrintUIAsync();

}

printerApp.print2 = function () {

 printerApp.preparePrint2();

 Windows.Graphics.Printing.PrintManager.showPrintUIAsync();

}

The preparePrint1 and preparePrint2 methods are specular methods that just add printable data
to the document subtree and hide unneeded print templates. You define both in the printerApp.js file.
The print1 and print2 methods are invoked from the click handlers of the print buttons in the user
interface.

The showPrintUIAsync system method is responsible for programmatically displaying the Charms
bar for printing—the exact same panel that a user can pop up by swiping from the right edge of the
screen. Figure 12-12 shows the print preview when the second template is sent to printers.

FIGURE 12-12 Gaining control over the content being printed.

Overall, printing from within a WinJS application is a matter of editing the current page so that it
only sends out the content you want to print to the browser.

 CHAPTER 12 Accessing devices and sensors 309

Note Since WinJS applications are essentially browser-based applications, you may think
that you can print the old JavaScript way: by calling the window.print method. That works,
but it is viable only in very simple situations. It is recommended that you use the window.
print method only if you have a single printing template. After you invoke window.print you
have no further control over the process and can’t update or customize the content being
printed.

Working with the GPS system

To round off this chapter, this section shows how you can obtain information about the user’s current
position. Getting to know the exact (or even approximate) user location is an incredibly valuable piece
of information, because it enables you to tailor specific services and information for that user.

Detecting latitude and longitude
Windows 8 devices are equipped with a GPS device that you can query for basic location information,
such as its latitude and longitude. Access to the device is wrapped up nicely in an easy-to-use API.

Setting up the project
To get started, you create a new project and follow all the steps as in previous exercises. The user
 interface can be as simple as in Figure 12-13: just a button and some text elements that display
 latitude and longitude.

FIGURE 12-13 The main user interface of the geolocation sample application.

The most important step in setting up the project is to add the Location capability in the
 application manifest. Open the manifest file in the project, select the Capabilities tab, and check
 Location, as shown in Figure 12-14.

310 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 12-14 Checking the Location capability.

The app obtains the location information from the GPS sensor, if one is available on the device.
If not, the component infers the user’s location information from the IP address that connects the
device to the Internet.

reading geographical position
The code you need to query the location subsystem is shown below. You can copy the following
 listing straight into the main application JavaScript file for the project, called latlong.js.

var latLongApp = latLongApp || {};

var geolocator = null;

latLongApp.init = function () {

 document.getElementById("buttonLocation")

 .addEventListener("click", latLongApp.getPosition);

}

latLongApp.getPosition = function () {

 geolocator = new Windows.Devices.Geolocation.Geolocator();

 var position = geolocator.getGeopositionAsync().then(latLongApp.display,

 latLongApp.error);

}

After you have a reference to the geolocation system component, you simply run a query using
the getGeopositionAsync method. As usual, the method works asynchronously and sets up a promise

 CHAPTER 12 Accessing devices and sensors 311

object that receives latitude and longitude information. Here’s the code in the latLongApp.display
method that displays the raw information to the user:

latLongApp.display = function (location) {

 document.getElementById("lat").innerHTML = location.coordinate.latitude;

 document.getElementById("long").innerHTML = location.coordinate.longitude;

}

Figure 12-15 shows the final result.

FIGURE 12-15 Raw latitude and longitude numbers shown to the user.

Note that the user may revoke permission to use the location manager at any time by going to
the Settings page and acting on the Permission page (see Figure 12-16). Typically, the first time the
application is launched on the computer, the system asks the user explicitly to enable the capability;
subsequently, it’s up to the user to revoke or grant permission for a capability. That same logic applies
to the earlier webcam example too.

312 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 12-16 The Settings page where the user can enable or revoke location permission to the application.

Making use of geolocation data
Geolocation data are quite sensitive, because a user’s location can—potentially—reveal where a given
individual is at a given time to the entire world. Location is certainly a matter of privacy, but it is also
a matter of marketing. For both reasons, Windows 8—as well as other mobile operating systems and
web browsers—tends to leave the decision to make location data available up to the user.

As a developer, what a geolocation API generally gives you is a series of numbers that represent
latitude and longitude. While latitude and longitude uniquely identify a specific location in the world,
they are not always useful to applications. To make them useful, you often need to convert the raw
numbers into more human-friendly geographical data, such as city and country?

Adding the Bing SDK to the application
According to the Windows 8 documentation, the object you receive from the call to
 getGeopositionAsync should also contain a property of type CivicAddress. As the name implies,
this data type is expected to share accurate information about the street, city, and country that
 corresponds to the pair of latitude and longitude values. However, if you read the documentation
carefully and thoroughly, you will also discover that Windows 8 doesn’t install any module that
can map a geoposition to a civic address. This means that the following code won’t throw any
 exception—but it also fails to give you meaningful data.

document.getElementById("address").innerHTML = location.civicAddress.country;

It turns out that to map latitude and longitude to a civic address (if such an address exists), you
need to reference the Microsoft Bing SDK from your project. A reference to the Bing SDK will also be

 CHAPTER 12 Accessing devices and sensors 313

helpful for visualizing the user’s location on a map. First, you need to download the Bing SDK from
the following URL: http://bit.ly/N9NFQN. Then, to reference the Bing SDK in your project, right-click
the References node and select Add Reference. Next, check the Bing Maps for JavaScript item, as
shown in Figure 12-17.

FIGURE 12-17 Referencing the Bing SDK.

Before you can successfully use the Bing SDK, there are a couple of other points to be addressed.
The first is to reference the Bing SDK JavaScript file from within your pages. In default.html, add the
following SCRIPT tag:

<!-- Bing Map Control references -->

<script type="text/javascript"

 src="ms-appx:///Bing.Maps.JavaScript//js/veapicore.js"></script>

The Bing SDK requires some credentials to work. Credentials are the way in which the library tracks
users and the use being made of the functions. Bing credentials consist of a key you create after you
register on the Bing portal at http://www.bingmapsportal.com. Figure 12-18 shows the page you land
on after you’ve successfully registered and created your key for a Windows Store app.

http://www.bingmapsportal.com

314 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 12-18 Getting the key to use the Bing SDK.

Make sure you note the key, because you will need it to use the Bing SDK in your applications.

latLongApp.BingKey = "...";

You need to initialize the Bing library before using it. That’s something you might want to do in the
application’s init method. Add the following code to the latLongApp.init method:

latLongApp.init = function () {

 ...

 Microsoft.Maps.loadModule('Microsoft.Maps.Map', { culture: 'en-us' });

}

Now you’re all set to display a map and retrieve address information.

Showing the location on a map
Windows Store applications written with JavaScript cannot rely on any built-in components to display
a map. However, you can add a DIV element to the page and then use the Bing SDK to render the
map within the boundaries of that DIV. Add the following code to default.html—position it as you
prefer—for example, just before the footer.

<div id="map" style="margin:2px;width:500px;height:400px; border:solid 2px #0ff;">

</div>

 CHAPTER 12 Accessing devices and sensors 315

You might want to explicitly size the DIV by assigning a width and height. Explicit sizing prevents
the map from covering the entire screen. You’ll need some new functions in latLongApp.js. Add the
following function that prepares the ground for displaying the map:

latLongApp.setupMap = function () {

 try {

 var mapOptions = {

 credentials: latLongApp.BingKey,

 mapTypeId: Microsoft.Maps.MapTypeId.road,

 width: 500,

 height: 400

 };

 var mapDiv = document.getElementById("map");

 latLongApp.map = new Microsoft.Maps.Map(mapDiv, mapOptions);

 }

 catch (e) {

 latLongApp.alert(e.message);

 }

};

It is key that the width and height properties match the size of the DIV element you plan to use
to display the map. You call this new function from within the callback method invoked when the
 coordinates have been retrieved. The latLongApp.display method becomes

latLongApp.display = function (location) {

 document.getElementById("lat").innerHTML = location.coordinate.latitude;

 document.getElementById("long").innerHTML = location.coordinate.longitude;

 // Clear the DIV and set up the map object

 document.getElementById("map").innerHTML = "";

 latLongApp.setupMap();

 // Reference the center of the map and set it to the current location

 var mapCenter = latLongApp.map.getCenter();

 mapCenter.latitude = location.coordinate.latitude;

 mapCenter.longitude = location.coordinate.longitude;

 // Set the map view

 latLongApp.map.setView({ center: mapCenter, zoom: 16 });

}

What you get this way is already useful, but you can improve it a bit by adding a pushpin to
 denote the user’s location more clearly. Here’s how to add a pushpin:

latLongApp.addPushPin = function (location) {

 latLongApp.map.entities.clear();

316 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 var pushpin = new Microsoft.Maps.Pushpin(location, null);

 latLongApp.map.entities.push(pushpin);

}

Call the addPushPin method at the end of the latLongApp.display method.

latLongApp.addPushPin(mapCenter);

Figure 12-19 shows the result.

FIGURE 12-19 The current location on a map with a pushpin to denote the exact position referred to by the
coordinates.

Getting address information
The final step in the exercise consists of mapping coordinates to more usable information, such
as street address, city, and country. As mentioned, this service is built into the native Windows 8
 functionality. However, by placing a direct call to the Bing service, you can get a JSON string containing
all the details.

 CHAPTER 12 Accessing devices and sensors 317

Add a new function to the latLongApp.js file. This function places a remote call to the Bing service,
passing coordinates and getting back detailed civic address information. The URL to call has the
 following format:

http://dev.virtualearth.net/REST/v1/Locations/lat,long?o=json&key=...

To invoke the URL, use the WinJS.xhr object you first discovered in Chapter 11, “Working with
remote data.” Here’s the code that converts coordinates to an address:

latLongApp.convertToAddress = function (location) {

 var url = "http://dev.virtualearth.net/REST/v1/Locations/" +

 location.latitude +

 "," +

 location.longitude +

 "?o=json&key=" +

 latLongApp.BingKey;

 // Invoke the Bing service

 WinJS.xhr({ url: url }).then(function (response) {

 var data = JSON.parse(response.responseText);

 var address = data.resourceSets[0].resources[0].name;

 // Prepare an info-box to add to the map

 var infoboxOptions = { zIndex: 3, title: address };

 var defaultInfobox = new Microsoft.Maps.Infobox(location, infoboxOptions);

 latLongApp.map.entities.push(defaultInfobox);

 });

}

The Bing service returns a complex JSON string that, after it’s parsed to a JavaScript object, stores
the full address to the name property.

var address = data.resourceSets[0].resources[0].name;

You can display the address in a number of ways. For example, you could display it as plain text in
the page. Alternatively, you can create an info-box that displays on the map close to the pushpin.

To call the Bing service, you need only the user’s latitude and longitude (plus, obviously, your Bing
key), so you can call the convertToAddress function at any time. In the sample application, however,
you might want to place the following call just after the call that adds the pushpin.

latLongApp.display = function (location) {

 ...

 latLongApp.addPushPin(mapCenter);

 latLongApp.convertToAddress(mapCenter);

}

318 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Figure 12-20 shows the final result.

FIGURE 12-20 Showing an info-box with the civic address for the given coordinates.

Summary

Both desktop computers and mobile devices (that is, laptops, tablets, and smartphones) are rich
in sensors and ad hoc hardware, which in turn enables developers to write more sophisticated
 applications that provide a unique perspective to users. The ability to detect the current device
 position with high accuracy enables personalization beyond the basic content and UI of the
 application. Other sensors, although not specifically demonstrated in this chapter, can help software
to figure out how the device is being used and manipulated or rotated.

Programming Windows Store applications requires that developers become familiar with a range
of sensors, such as the GPS sensor that works as a gateway to the surrounding world and hardware.
In this chapter, you tackled the webcam, printer, and GPS. More importantly, you explored methods
that you can easily apply to other sensors, such as the accelerometer or gyroscope.

In the next chapter, you’ll deal with the most characteristic feature of Windows-based devices—
Live tiles.

 319

Chapter 13

Adding Live tiles

There are sadistic scientists who hurry to hunt down errors instead of establishing
the truth.

— Marie Curie

The Microsoft Windows 8 and Windows Phone user interfaces are characterized by colorful blocks
that remind many users of those old-fashioned icons that made earlier versions of Microsoft Win-

dows so popular. However, the new blocks are significantly larger than icons and are displayed side by
side under the control of the operating system. The blocks are referred to as tiles. The term tile mostly
refers to the shape and size of the graphical element. Tiles in Windows 8 (as well as tiles in Windows
Phone) have an additional and fairly interesting capability: they can display tailored information
generated by the application appropriate for the needs of the user who installed the application. Such
tiles are referred to as Live tiles.

An icon is a static image that makes it quick and fast for users to identify the application. The icon,
though, never changes on its own to reflect the current state of the application. A Live tile, on the
other hand, is a sort of an application appendix that passes some content to the operating system,
which then displays that information to the user even when the application is offline or not running.

From a developer’s perspective, dealing with Live tiles requires becoming familiar with a new
 application programming interface (API), and the concept of an application notification. In this
 chapter, you’ll work through an exercise that adds Live tiles to the TodoList application you built in
previous chapters.

What’s a Live tile anyway?

Figure 13-1 shows the Start screen of a Windows 8 machine. Each block in the user interface
 represents an installed application. While a Live tile can be active and kept up to date, in most cases
(such as when the application is offline) the tile is just a newer and snazzier version of the plain
icons used in previous versions of Windows. In Figure 13-1, all the tiles are static and show only the
 application’s logo and name.

http://www.quotationspage.com/quote/34024.html
http://www.quotationspage.com/quote/34024.html

320 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 13-1 Tiles in the Start screen of a Windows 8 machine.

Tiles in action
Users can operate on tiles in much the same way they can operate on icons in earlier versions of
Windows. Specifically, the user can move tiles around, group them, make them larger or smaller, and
enable or disable live notifications. In the end, tiles are just updated icons, restyled and enriched with
the ability to receive live notifications from the underlying application.

Moving Live tiles around
Windows 8 creates a new tile for each installed application and pins it to the Start screen. It is then up
to the user to unpin the tile from the Start screen if they don’t want to see its tile, or even uninstall the
application altogether. Figure 13-2 shows the context menu that appears when a user right-clicks a tile.

As Figure 13-2 shows, the available operations are: unpin the application from the Start screen,
uninstall the application, change the size of the tile, and toggle live notifications from the application
on or off.

 CHAPTER 13 Adding Live tiles 321

FIGURE 13-2 The context menu of a tile.

Just as with icons in Windows 7 and earlier versions, users can move tiles around and organize
them in a horizontally scrolling list. Unlike icons, though, in Windows 8 tiles can’t be grouped into
folders. Moving tiles couldn’t be simpler; all a user needs to do is drag tiles around using the mouse
or a finger on a touch-enabled device (see Figure 13-3).

FIGURE 13-3 Moving tiles around.

322 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

resizing tiles
Tiles can be of two sizes: small or large. A small tile is a square box of 130 x 130 pixels; a large tile is
about twice that wide. In Figure 13-3, the Microsoft Internet Explorer tile being moved is a small one;
the Mail tile in the top-left corner is an example of a large one.

Tiles for custom applications are always created as small tiles; the size can be changed only by
the user, through the context menu. Resizable tiles are a challenge for developers who want to add
notifications to their applications. As you’ll see later in the exercise, you should plan to use different
graphical templates for small and large tiles.

Unpinned applications
In Figure 13-2, you saw the Unpin From Start menu item. That option lets users remove a given
 application from the Start screen. Note that unpinned is not the same as uninstalled. Unpinned simply
means removing an application from the list of applications visible in the Start screen, whereas
 uninstalled means that the application has been fully removed from the device.

To retrieve an unpinned application later, simply swipe from the bottom of the device (or
 right-click outside of any tiles). In doing so, you bring up a context menu with a button that gives you
access to the full list of installed applications, which includes unpinned applications (see Figure 13-4).
Another option is to start typing the name of an application from the Start screen; the UI will limit the
display to only those applications whose names match the typed characters.

FIGURE 13-4 The list of all installed applications.

 CHAPTER 13 Adding Live tiles 323

Creating Live tiles for a basic application
The most interesting aspect of dealing with tiles is making them live, via support for programmatic
notifications. To approach the task of turning tiles into Live tiles in a simple way, you’ll first build a
new sample application that displays some static text in its tile. Next, you’ll proceed with a more
 sophisticated example where the text displayed reflects the data and state of the application itself.

preparing the application
Create a new Windows Store application using the usual Blank App template and add the usual
header.html and footer.html files in the Pages folder. You will also need to add a few new styles to the
default.css file and add a JavaScript file named tilesDemoApp.js after the application. In addition, it is
key for you to add the following line to the default.js bootstrapper code.

app.onready = function (args) {

 tilesDemoApp.init();

};

Here’s the initial content of tilesDemoApp.js:

var tilesDemoApp = tilesDemoApp || {};

tilesDemoApp.init = function () {

 // More code goes here

};

The default.html page should look like the code below:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Simple Tiles Demo</title>

 <!-- WinJS references -->

 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet" />

 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>

 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- TilesDemo references -->

 <link href="/css/default.css" rel="stylesheet" />

 <script src="/js/default.js"></script>

 <script src="/js/tilesdemoapp.js"></script>

</head>

<body>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/header.html'}"></div>

324 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 <h1>Simple Tiles Demo (CH13)</h1>

 <div data-win-control="WinJS.UI.HtmlControl"

 data-win-options="{uri:'/pages/footer.html'}"></div>

</body>

</html>

So far, so good, but nothing in the application yet adds life to the default static tile.

The notification object
To add live capabilities to tiles, you need to create a notification. In this context, a notification is an
instance of the Windows.UI.Notifications.TileNotification object. When you instantiate the notifica-
tion object you pass some data that identifies the layout you want for the content within the tile. You
should create the notification object only once in the application’s lifecycle. However, you can subse-
quently update the tile’s content as many times as needed depending on the logic of the application.
The notification object acts as a bridge between the application and the system; once created, the
notification remains in place for some time even if the application is terminated or offline.

Creating an application notification
To add Live tiles to an application, you go through three steps. First, you choose the layout of the tile
text. Next, you add application-specific data to the layout. Finally, you create a notification object
from the template and add it to the system’s list.

Windows 8 comes with a long list of tile templates. You find them in the Windows.UI.Notifications.
TileTemplateType enumeration. Each member of the enumeration refers to a different layout with a
few placeholders for text and/or images. A frequently used tile template is the following:

Windows.UI.Notifications.TileTemplateType.tileSquareText02

The template consists of two rows of text that are automatically styled to look like the title and
subtitle of some item. The first line of text is aligned at the top of the tile and displays with a larger
font. The second line wraps to the bottom and is rendered with a smaller font.

A tile template is ultimately an XML string; as a developer, however, you don’t have much exposure
to the details of the XML. All you need to do is get the content of the template and work on it to
replace some elements. Here’s the code you need to add to the startup code of your application. You
open up the tilesDemoApp.js file and add the following code:

tilesDemoApp.init = function () {

 var template = Windows.UI.Notifications.TileTemplateType.tileSquareText02;

 var xml = Windows.UI.Notifications.TileUpdateManager.

 getTemplateContent(template);

 // More code goes here

}

 CHAPTER 13 Adding Live tiles 325

The XML content returned to you depends on the selected template. For the template chosen
here, the template contains two text elements to be filled up with the text you want to display on the
tile. Add the following code to add application-specific content to the template.

tilesDemoApp.init = function () {

 var template = Windows.UI.Notifications.TileTemplateType.tileSquareText02;

 var xml = Windows.UI.Notifications.TileUpdateManager.

 getTemplateContent(template);

 var textElements = xml.getElementsByTagName("text");

 // Fill up text placeholders in the tile template

 textElements[0].innerText = "Title";

 textElements[1].innerText = "This is the subtitle";

 // More code goes here

}

Finally, you need to register the tile with the operating system so that the content can be properly
displayed from the Start screen. A few more lines of code should then be added to the init function in
the tilesDemoApp.js file. Here’s the final code you need to have in the init function:

tilesDemoApp.init = function () {

 var template = Windows.UI.Notifications.TileTemplateType.tileSquareText02;

 var xml = Windows.UI.Notifications.TileUpdateManager.

 getTemplateContent(template);

 var textElements = xml.getElementsByTagName("text");

 // Fill up text placeholders in the tile template

 textElements[0].innerText = "Title";

 textElements[1].innerText = "This is the subtitle";

 // Create and register the notification object

 var liveTile = new Windows.UI.Notifications.TileNotification(xml);

 Windows.UI

 .Notifications

 .TileUpdateManager.createTileUpdaterForApplication().update(liveTile);

}

You first create a new notification object from the template XML and then add it to the system’s
list of Live tiles for the installed applications. For each currently active Live tile, the system maintains
an updater object that is responsible for periodically displaying up-to-date content in the Start screen.
Figure 13-5 shows the Live tile of the sample application as it shows up on a Windows 8 machine.

326 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 13-5 The Live tile for the sample application in action.

Regardless of the template you choose, the original application’s logo is still displayed at the
 bottom of the tile. The rest of the tile is at your disposal and can be filled up according to the
 template.

Adding Live tiles to an existing application

In the end, adding a Live tile to the application is not really a hard task. All that it takes is a few calls to
a system provided API. The challenge comes when you try to add Live tiles to a real-world application.
In this case, the hardest part of the job is deciding which data goes to the Live tile, how you retrieve
that, how often you update it and, of course, picking up the most appropriate template. In addition,
you also might want to support both large and small tiles so that you serve your users a true
Windows 8 experience.

Bringing back the TodoList application
In Chapter 10, “Adding persistent data to applications,” you completed an exercise aimed at creating
a persistent version of the TodoList application. The final version of the application was able to create,
edit, and delete tasks; each task was saved to the roaming folder thus ensuring that the application’s
settings could be uploaded to the cloud and shared with another copy of the same application
 installed on a different PC or device.

In this exercise, you’ll take over from there and extend the TodoList application of Chapter 10 with
Live tiles.

 CHAPTER 13 Adding Live tiles 327

preparing the ground
You make a copy of the project from Chapter 10 and name it TodoList-Local. You might want to
rename project files to reflect the number of the current chapter. You might also want to tweak the
content of the default.html page for pure graphical reasons. So open the default.html file in the text
editor within Microsoft Visual Studio and edit the following line:

<h1> TO-DO List (CH13) </h1>

Now you should be ready for refreshing your memory of the application and making plans for Live
tiles. Figure 13-6 shows the main user interface of the application—nearly the same as in Chapter 10.
Figure 13-7, instead, shows the default tile that Windows 8 creates for the application.

FIGURE 13-6 The basic application to be extended with Live tiles.

FIGURE 13-7 The default tile of the TodoList application.

328 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

As a user, when you right-click a tile you see a context menu with the options available. When Live
tiles are not active, no special option is made available. Windows 8 detects if the application supports
Live tiles and adds an extra button to the context menu to turn live updates on and off.

Identifying project files to edit
As you may have noted with the previous basic exercise, adding Live tiles support to an application
only requires a bit of code. Subsequently, the only project file you should focus on, as far as Live
tiles are concerned, is todolist.js. Live tiles, in fact, have no impact on the overall user interface of the
 application, nor do they affect the application’s manifest or require special permissions.

However, just because the Live tiles management code is sort of standalone code, it can be easily
isolated to a distinct file which is then called back from the main script file of the application. So in
the rest of the exercise, you’ll be focusing on the creation of a new JavaScript file and, maybe more
importantly, on the most appropriate template and content to display.

Implementation of Live tiles
Live tiles exist as a way for developers to present useful information to users without requiring them
to even open up the application. Live tiles serve as a reminder about the features or content of the
application, and they also tend to make your application more frequently used. For Live tiles to be
successful, they should present useful information about the application in a timely and attractive
manner. For this reason, the choice of the tile template and the selection of data to display is key.

preparing the ground for Live tiles
You add a new JavaScript file to the project. Let’s call it liveTiles.js. To start out, you also add the
 following code to the newly created file:

var liveTilesManager = liveTilesManager || {};

liveTilesManager.enable = function (listOfTasks) {

 // More code goes here

}

In addition, you should reference the liveTiles.js file from within default.html. Therefore, you open
default.html in the Visual Studio editor and add the following line:

<script src="/js/livetiles.js"></script>

Now you’re ready to add some more significant code to the Live tiles manager.

Choosing the tile templates
Windows 8 comes with a long list of predefined templates for tiles. You find predefined templates for
both large and small tiles. Essentially, a tile template is a short piece of XML data that wraps up the
 information to show. Typically, a Live tile consists of images and one or more lines of text. To learn

 CHAPTER 13 Adding Live tiles 329

more about the available tile templates, you can pay a visit to the following URL: http://msdn.micro-
soft.com/en-us/library/windows/apps/hh761491.aspx.

Most of the time, the tile contains a title and a subtitle possibly split over multiple lines. Several
templates, however, exist that also add an image.

The choice of the template should also take into account the size of the tile and the fact that the
user may be willing to change the size of the template on the fly by simply acting on the context
menu of the tile. For the purpose of this exercise, you choose the following templates—for the large
and small tiles, respectively.

Windows.UI.Notifications.TileTemplateType.tileWideText01

Windows.UI.Notifications.TileTemplateType.tileSquareText02

The former template is made of four lines of text styled differently. The first line displays with a
larger font, whereas the lines that follow use regular font size, display on different lines, and do not
wrap text. The latter template is for small tiles and is made of one header string rendered in larger
font. The header string is followed by a second string of text rendered with regular font and wrapped
over a maximum of three lines.

To enable the chosen tile templates, you add the following code to the liveTiles.js file:

liveTilesManager.enable = function (listOfTasks) {

 // Prepare template for LARGE tile

 var templateLarge = Windows.UI.Notifications.TileTemplateType.tileWideText01;

 var xmlLarge = Windows.UI.Notifications.TileUpdateManager.getTemplateContent

 (templateLarge);

 var textElementsLarge = xmlLarge.getElementsByTagName("text");

 // Prepare template for SMALL tile

 var templateSmall = Windows.UI.Notifications.TileTemplateType.tileSquareText02;

 var xmlSmall = Windows.UI.Notifications.TileUpdateManager.getTemplateContent

 (templateSmall);

 var textElementsSmall = xmlSmall.getElementsByTagName("text");

 // More code goes here

}

As you learned in the previous exercise, a tile template consists of multiple text elements. In the
code, variables textElementsLarge and textElementsSmall are arrays of XML nodes that refer to the
text elements in the two XML templates.

The next step consists of populating these text elements with data that belongs to the running
application.

330 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Selecting data to display in tiles
The TodoList application is entirely based on a list of tasks; each task has its own description, due
date, and priority. A Live tile for TodoList will likely display the latest task or perhaps the next task
to be completed. The liveTilesManager.enable function receives the list of current tasks and decides
which information to display.

In this exercise, you will pick up the first task and display its description and due date. For this to
happen, you add the following code to the liveTiles.js file. More precisely, you add this code to the
bottom of the liveTilesManager.enable function.

// Grab application's information for the tile(s) to display

var featuredTask = listOfTasks.getAt(0);

// Add data to the tile(s)

textElementsLarge[0].innerText = "TO DO";

textElementsLarge[1].innerText = featuredTask.description;

textElementsLarge[2].innerText = "";

textElementsLarge[3].innerText = "due by: " + featuredTask.dueDate.

 toLocaleDateString();

textElementsSmall[0].innerText = liveTilesManager.getDueDateCompact(featuredTask);

textElementsSmall[1].innerText = featuredTask.description;

You also need to add the code for the liveTilesManager.getDueDateCompact function. This
 function is a utility function that simply formats the due date in an mm/dd/yyyy format. The function
goes at the end of the liveTiles.js file.

liveTilesManager.getDueDateCompact = function (task) {

 var date = task.dueDate;

 var day = date.getDate();

 var month = date.getMonth();

 month++;

 var year = date.getFullYear();

 var x = month + "/" + day + "/" + year;

 return x;

}

Combining small and large template together
Although it is not strictly required, any Windows Store application should consider supporting both
small and large tiles. So far, you configured both tiles independently; however, this is not enough.
Windows 8 requires that large and small tile templates are combined together in a single template.
This must be done programmatically. Here’s the code you need to append to the liveTilesManager.
enable function:

 CHAPTER 13 Adding Live tiles 331

// Combine together small and large templates

var node = xmlLarge.importNode(xmlSmall.getElementsByTagName("binding").

 item(0), true);

xmlLarge.getElementsByTagName("visual").item(0).appendChild(node);

The net effect of this code is appending the small template to the large template. Now you’re
ready to create the notification object from the template and register it with the system. You
 therefore add the following code:

// Create the notification object

var tileNotification = new Windows.UI.Notifications.TileNotification(xmlLarge);

Windows.UI.Notifications

 .TileUpdateManager.createTileUpdaterForApplication().

 update(tileNotification);

In summary, you are now all set as far as the creation of the tiles is concerned. The remaining point
is connecting the application with the tiles.

Connecting tiles and application
The application’s tiles are updated whenever the application hits some code that updates the
 notification object. The frequency of these updates, and the content displayed, depend on the
 application. As far as the TodoList application is concerned, the notification object is created upon
startup and updated every time a new task is edited, deleted, or created. This ensures that fresh data
is always displayed to the user as a reminder even when the application is not running.

Given the structure of the TodoList application, the best place to invoke the liveTilesManager.enable
function is from within the populateTaskList function that you find defined within todolist.js. You locate
the function and modify it, as shown below:

TodoList.populateTaskList = function () {

 var promise = new WinJS.Promise(function (complete) {

 var tasks = new Array();

 var localFolder = Windows.Storage.ApplicationData.current.roamingFolder;

 localFolder.getFilesAsync()

 .then(function (files) {

 var io = Windows.Storage.FileIO;

 files.forEach(function (file) {

 io.readTextAsync(file)

 .then(function (json) {

 var task = TodoList.deserializeTask(json);

 tasks.push(task);

 })

 .then(function () {

 var tasksList = new WinJS.Binding.List(tasks);

332 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 tasksList = tasksList.createSorted(function (first,

 second) {

 return first.dueDate > second.dueDate;

 });

 var listview = document.getElementById("task-listview").

 winControl;

 listview.itemDataSource = tasksList.dataSource;

 // Notification

 liveTilesManager.enable(tasksList);

 });

 });

 })

 });

 return promise;

}

Compared to the original version of the populateTaskList function, there are two main changes
to note. The first change is the obvious call to the liveTilesManager.enable function which turns
on Live tiles. The second change refers to the promise object that wraps up the entire body of the
 function. The promise object is not strictly required but helps in case of further development. Having
 populateTaskList return a promise gives you a chance to concatenate the behavior of populateTaskList
with other behavior via the then and done methods.

Figure 13-8 shows the large Live tile of the application.

FIGURE 13-8 The large tile of the application.

 CHAPTER 13 Adding Live tiles 333

Figure 13-9, instead, shows the small tile. As you can see in Figure 13-9, now the context menu of
the application’s tile also includes buttons to turn on and off live notifications.

FIGURE 13-9 The small tile of the application with its context menu.

More advanced features of Live tiles
The two exercises discussed in the chapter show basic features of Live tiles and are enough to
get developers started. However, the feature list of tiles doesn’t end here. In particular, you can
add an expiration to notifications so that Live tiles are automatically turned off when a given
time is reached. This is particularly useful when the application needs to display data in the
form of reminders. In addition, you can associate the content of tiles with background agents
so that the content is updated in the background even when the application is not running.
A background agent is a piece of code that doesn’t have a user interface but runs periodically
under the control of the operating system. By using a background agent, an application can
retrieve data asynchronously and push updates to the tiles even without displaying its own user
interface.

Summary

In this chapter, you learned about Live tiles. Live tiles are a unique feature of Windows 8 that
 applications can use to display information to the user right from the Start screen. Any Windows Store
application is assigned a tile upon installation; by using some ad hoc code, you can give life to the tile
and make it receive and display application information.

334 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

In the first exercise, you configured a sample application feeding a small tile with canned data.
Next, you extended the TodoList application from Chapter 10 and added small and large Live tiles to
display the details of the latest task. The user has a lot of control over tiles: at any time the user can
switch between small and large tiles and even turn off live notifications entirely.

With this chapter, you completed the tour of Windows 8 programming and you are now ready for
publishing an application to the Windows Store.

 335

Chapter 14

publishing an application

Success is the ability to go from one failure to another with no loss of enthusiasm.
— Winston Churchill

For many years, the process of publishing a Microsoft Windows application was limited to building
a setup program—possibly with the aid of an ad hoc framework. The setup program, in the end,

looked a lot like a smart script through which you copy files in the target folder, arrange databases,
 configure the system, and create a shortcut on the desktop. More importantly, the setup program
could be distributed directly by the author with no sort of intermediation. The author was also re-
sponsible for advertising the application.

Mobile platforms such as iOS and Windows Phone approached the problem of distributing
 applications in a different way. The platform owner—Apple for iOS and Microsoft for Windows
Phone—makes itself responsible for distributing applications and for giving applications a bit of
extra visibility by creating a central store. This approach has been taken also for Microsoft Windows 8
 native applications that are, in fact, known as Windows Store applications.

In Windows 8, applications that use the native user interface—those applications you practiced
with throughout the book—can only be distributed through the store. The main reason for this choice
is to ensure that available applications are of good quality, work well on the devices, and are devoid
of security vulnerabilities and bugs. Microsoft ensures an application is good for the store at the end
of a certification process; as you can guess, this comes at a cost. The cost is a 30 percent share of the
price for paid applications. For free applications, there’s a limitation on the number you can upload
and a flat rate beyond the threshold.

In this book, you learned how to build Windows Store applications by taking advantage of the
 several new application programming interfaces (APIs) available. Now it’s about time you close the
circle and learn what it takes to publish a finished application to the store.

336 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Getting a developer account

So, Windows 8 users can only install new Windows 8 applications from the Windows Store. But
who can upload such applications? The answer is that every Windows 8 developer must obtain a
 developer account from Microsoft, which entitles them to publish applications. Without a valid
 developer account, your dazzling application will never be installed except on the computer where
you developed it.

Note Windows 8 comes with two main areas of functionality. One is the classic Windows
user interface that allows you to install any application, either manually or through a
 provided setup program—just as in any previous version of Windows. The other is based
on the modern Windows 8 user interface. To install any of these applications, you need to
get and install them from the Windows Store.

registering as a developer of free applications
To register as a Windows 8 developer, from the Microsoft Visual Studio Store menu, choose the Open
Developer Account item and then follow the on-screen instructions (see Figure 14-1).

FIGURE 14-1 The Store menu to create a developer’s account.

Clicking the Get A Developer License For Windows Store Apps link takes you to the Windows 8 Dev
Center, where you click the displayed button to register as a developer (see Figure 14-2).

 CHAPTER 14 Publishing an application 337

FIGURE 14-2 Click to start the registration process.

If you already have a Windows Phone developer account, you can associate that to Windows 8
instead of completing a new registration. However, if you want to keep distinct accounts for Windows
Phone and Windows 8, then you need to provide distinct Windows Live IDs. Of course, if you are a
new Windows 8 developer, you just enter a Live ID and proceed.

Account information
When creating a new developer account, you should be aware of which type of account you want to
create: personal or business (see Figure 14-3).

338 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 14-3 Do you want an individual or a company account?

Note that you can’t switch from one type of account to another. To create a company account,
you need to provide Microsoft with a lot more documentation about the company and its executives.
On the other hand, a company account lets you have multiple administrators—and even create and
publish applications for internal company use. However, if you’re just practicing with Windows 8 and
want to upload one or two applications for which you are the sole developer, an individual account is
just fine.

You proceed by entering your personal information, including your full name and address. Next, you
choose your display name. The display name is important, because it is the name that Windows 8 will
show as the author of the application. The display name of any app publisher must be unique; when
you suggest a name the Windows 8 Dev Center site provides real-time verification as to whether the
name you have chosen is available or already taken (see Figure 14-4).

FIGURE 14-4 The publisher’s name must be unique.

 CHAPTER 14 Publishing an application 339

payment details
Whether you want to create a personal or business account, you must be a registered Windows 8
 developer. Unfortunately, registration is not free. You must pay to be a Windows Phone or iOS developer,
and you must pay a yearly fee to be a Windows 8 developer as well. At the time of this writing, the
registration fee for individuals is $49.00. For companies, it is $99.00 (or an equivalent amount in other
currencies).

After choosing your display name, you will see the contract that’s being signed between you and
the Windows Store. You’ll also see a summary page detailing what you get in return for your money
(see Figure 14-5). If you decide to proceed, you will be asked to enter your credit card information to
pay the fee. If you have a promotion code, you will enter it at this time.

FIGURE 14-5 The checkout screen.

registering as a developer of paid applications
Figure 14-6 shows the final screen you see after you have successfully completed the registration
process. At this point, you’re all set to start publishing free applications. If you intend to publish paid
applications, however, you’ll need to complete some extra steps.

340 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 14-6 You’re now enabled to publish free applications to the Windows Store.

From the Microsoft perspective, the fundamental difference between free and paid user
 applications is that in the latter case, Microsoft needs to pay you when people buy your applications.
Consequently, before your app can be published to the store, Microsoft needs to make sure it knows
how to pay you later.

You must provide two separate blocks of information: bank details, so that money can be safely
wired to you, and tax information, to satisfy internal revenue service (IRS) reporting requirements.
The banking information may vary depending on the country you live in, but most of the time it
requires only an international bank code and an alphanumeric string (the IBAN string) that identifies
your account.

As far as taxes are concerned, you may need to fill out an electronic form, which is different for US
residents and non-US residents. The details of this step may vary from country to country, but for the
most part there should be no need to mail paper documents. Dealing with taxes and banks is usually
an annoying procedure, but in this case it doesn’t take too long—and hopefully happens only once.
For more information, you can refer to the instructions at the following link: http://bit.ly/PrOrbW.

Steps required to publish an application

All Windows Store applications go into the same catalog; therefore, each application must have a
unique name.

Choosing a name for the application
Choosing a name is therefore an important step; if you have a very specific name in mind, then you
should plan to reserve it in advance. If the name you like is already taken, you have no other option
than to choose a different name!

 CHAPTER 14 Publishing an application 341

reserving an application name
You can reserve a name for your future application at any time by clicking the Reserve App Name
 option in the Store menu of Visual Studio (see Figure 14-7).

FIGURE 14-7 Starting the procedure to reserve the application’s name.

To reserve the name, type the name of the application; if the Windows Store detects no conflicts,
you will get a positive response, as shown in Figure 14-8.

FIGURE 14-8 The name T-List has been reserved.

Note that after a name has been reserved, you are the only person who can use it. Name reservations
are valid for one year; however, if you don’t publish an application under that name within a year of
 making the reservation, the Windows Store will release the name and others can use it.

342 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Localizing an application name
There are some situations in which the application has a name that is “neutral” to spoken languages.
In such cases, you won’t ever want to change the name regardless of how many languages you
localize the application for. This is, however, a very special situation. More likely, you might want to
translate—or just change—the name of an application based on the language used by its intended
audience. Using a different name for each supported language is a recommended (not mandatory)
approach. If you plan to use localized names, the page in Figure 14-9 shows how to proceed.

FIGURE 14-9 Choosing localized names.

After reserving the name, you can start packaging the application.

Note As mentioned, if the name is truly important for the application, then you should first
reserve the name and then start developing the application.

packaging an application
The packaging step consists of creating a single container with all the files that make up your
 application. Before you start packaging, you should ensure that the application is feature-complete
and contains no bugs or vulnerabilities.

Compiling in release mode store logo.png
A finished Windows Store application is an application that needs no further changes to the code and
has defined files for the various logos and the splash screen. In addition, you might also want to have
some screenshots ready that help advertise the application in the Windows Store. Pay attention to the
file: that will be your application’s icon in the Windows Store.

When everything is ready, you first compile the application code in Release mode. When you
 compile an application, you usually choose between two modes: Debug (the default) and Release.
Both modes produce a valid executable file; however, the Debug mode pads the executable

 CHAPTER 14 Publishing an application 343

file with extra information used for debugging purposes. After your application is bug-free and
 feature-complete, there’s no longer any need to keep the debug information. Compiling in
 Release mode gives you a more compact (and even slightly faster) executable that doesn’t include
 unnecessary internal debugging symbols.

preparing the app package
After you have an executable compiled in Release mode, you can proceed with the creation of an
app package. You create an app package by clicking the Create App Packages item in the Store menu
(see Figure 14-10).

FIGURE 14-10 Start the process of creating an app package.

Package creation requires several steps, during which Visual Studio displays a few forms for you
to fill out. The first form is shown in Figure 14-11. This form requires you to enter the name of the
published application. The form lists any reserved names you may have; you can just select one or run
the wizard to reserve a new name at this time.

344 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 14-11 Setting the name of the application.

In the next step, you choose the destination folder on the local disk where you want to save the
package. Keeping track of this folder is important, because you will need it to upload the package to
the Windows Store at the end of the packaging process. You also need to select at least one target
platform from the form shown in Figure 14-12.

FIGURE 14-12 Choosing a target Windows 8 platform.

 CHAPTER 14 Publishing an application 345

The target platform refers to the hardware architecture of the machines that may run your
 application. To ensure the widest possible audience for your application, you should generally choose
to compile for all platforms.

Important The point here is that the Windows 8 operating system runs on a variety of
 different hardware configurations, most typically 32-bit machines (x86), 64-bit machines
(x64), and devices such as a tablet with an ARM architecture. To make it clear, if you fail to
tick the ARM checkbox, then your Windows Store application won’t be able to run on a
Windows 8 tablet running WinRT.

When you push the Create button in the form shown in Figure 14-12, Visual Studio runs a process
that creates a valid package for the Windows Store application. During this process, Visual Studio
launches the application and performs several tests on it. If everything checks out, you will see the
dialog box shown in Figure 14-13.

FIGURE 14-13 The app package has been successfully created.

Having an app package ready doesn’t mean that you’re done. The application is not yet ready to
upload to the Windows Store. You have only created the package in a format that the Windows Store

346 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

can accept. There’s no guarantee that your application, as-is, will be accepted and published to the
store. Your application must still be certified before it can appear in the Windows Store.

Any application submitted to the Windows Store for publication needs to pass a number of
 additional tests. If the application crashes during any of these tests, or fails the tests in any way,
the Windows Store will reject the application, providing you with documentation about the app’s
 misbehavior and some guidelines on how you can go about fixing it.

The Windows App Certification Kit
To avoid a rejection, or more precisely, to reduce the likelihood that your application will be rejected,
you can run the same battery of tests that Microsoft runs on applications locally, before you submit
your app to the store. Those tests are available to you through the Windows App Certification Kit.
As shown in Figure 14-13, you can click on the Launch Windows App Certification Kit button at the
bottom of the window and run the same tests locally that your application will be subject to after you
submit it. Figure 14 shows the two-step process.

FIGURE 14-14 Running the Windows App Certification Kit.

You can look at a test report to get details by clicking the link shown in the final dialog box.
Figure 14-15 shows a sample test report for an application that passed the tests.

Passing the tests in the certification kit doesn’t guarantee that your application will pass all
 Windows Store criteria and be accepted in the store. However, it should make you confident that you
have given your application the best possible chance to be published when you upload it.

Note It’s always a good practice to ensure that your app passes the certification kit before
you upload it. After uploading, it may take over a week before you get a response from
Microsoft. If the response is negative, even assuming you fix and resubmit it immediately, it
will take at least another week before your application can be published.

 CHAPTER 14 Publishing an application 347

FIGURE 14-15 A sample report of the standard tests for a successful app.

Uploading the application
The final step in getting the application published is to send the package to Microsoft. You do this
by clicking Upload App Packages from the Visual Studio Store menu. As soon as the package transfer
begins, you will see a page similar to Figure 14-16.

FIGURE 14-16 Uploading the package named T-List to the Windows Store.

After it has reached the Windows Store servers, you need to properly describe your application
 package and get it ready for final testing. So at this stage, you enter the description that you want users to

348 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

see, and any keywords that may help them to find your app in the store (see Figure 14-17). This is also the
place where you can add screenshots to help sell your application to potential customers.

FIGURE 14-17 Entering the description and keywords for your application.

The application will go through several tests before publishing. Some tests are automated (for
example, the tests in the certification kit); other tests will be run by a person. You may enter some
information to help that person better understand and verify your application’s behavior. As in
Figure 14-18, adding notes for testers is the final step before you actually submit the application for
 certification.

FIGURE 14-18 All has been done; the app is ready for certification.

 CHAPTER 14 Publishing an application 349

After you submit your application for certification, the related package is queued for the
 automated tests. Automated tests are related to security and technical compliance of the application.
They are analogous to the certification tests you (should) have already run locally, and because
they’re automatic, you’ll know whether your app passed or was rejected within only a few hours.
If something goes wrong, you receive a prompt notification.

The most delicate part of the certification process is checking for content compliance. This task is
completed by a person, and may take up to seven days. After passing this test, the application goes
into Release mode. When you entered the application description, you were also given the chance to
decide about the release procedure. Application release can happen as soon as the application has
passed all tests, or at your earliest convenience. After the application is approved and you’re ready
to publish it, the package moves to the signing phase, where its binary code is signed with a key to
 prevent tampering and is then put on the output queue to become visible on the Windows Store
servers.

Sideloaded applications
The scenario described so far is likely the most frequent. However, there’s another scenario that needs
to be addressed briefly. What if you don’t want to publish the application to the store, but just make it
available to a well-known customer or customers?

Publishing an application to the Windows Store, whether a free or paid application, gives every
owner of a machine equipped with Windows 8 a chance to download and install your application. This
is desirable in most cases, but not in all cases.

Therefore, Windows 8 offers a different way to distribute applications, known as Enterprise
 Sideloading. Not all Windows 8 machines are configured to support sideloaded applications, so by
taking this track, you are limiting your target audience to only owners of the Enterprise edition of
Windows 8. More basic versions of Windows 8 don’t support sideloaded applications—only approved
applications that are downloaded and installed from the store. However, even basic Windows 8
 machines can support sideloaded applications by purchasing ad hoc keys on a per machine basis.

In addition, for application sideloading to work, the target machines must be part of a domain that
enables the policy to “Allow all trusted apps to install.”

Summary

Overall, you have three options for writing applications that run on a Windows 8 machine. The first
is to write Windows desktop applications that also run on earlier versions of Windows. But if you
were doing that, the entire content of this book would be useless to you. In fact, you would write
such applications against the .NET Framework using C# or Visual Basic as the primary programming
language.

The second alternative is the main thrust of what this book has covered: writing Windows
Store applications that take advantage of both Windows RT and the Windows 8 modern UI.

350 Start Here! Build Windows 8 Apps with HTML5 and JavaScript

These applications, though, are usually intended for distribution through the Windows Store in an
 unrestricted way. This means that after you have made the application available to the Windows
Store, any Windows 8 user can get and install it. Finally, the third option is to create sideloaded
 applications. A sideloaded application is a Windows 8 modern UI application, such as those described
in this book, that you can install on machines set up so they have special capability of accepting
 trusted applications. It is key to note that a sideloaded application is in no way different from a
Windows Store application; it’s the target environment that must be configured differently, so that
machine can install applications from locations other than the Windows Store, such as via email or
from a CD or DVD.

This book covered Windows 8 development with HTML5 and JavaScript from an initial “Hello
 Windows 8” application all the way through to publishing a completed free or for-sale application.
If you made it to this point and completed all the exercises, you’re in a position to start publishing
some great Windows 8 applications. All the best!

 351

active pseudo-class, anchors, 67–68
alpha channel for color transparency, 56
anchor pseudo-classes, 67–68
anchors. See <a> element, HTML
AND keyword, media queries, 71
anonymous functions, JavaScript, 81, 88–89
App bar, 103, 108, 109–112
AppBar object, 110
AppBar widget, 107
application objects, persisting, 235–247

appending data to files, 240
deleting files, 240
reading files, 243–247
serialization formats for, 240–243, 245–247
writing files, 237–240

Application.PageControlNavigator object, 150
applications. See also Windows 8 applications

prior to Windows 8, standard mode for, 98–99
types of, 11

application settings, persisting, 228–230, 248–249
ApplicationViewState object, 178
app object

onactivated event, 115, 117, 119, 134
oncheckpoint event, 118
onready event, 165
onsettings event, 224

Array object, JavaScript, 75
arrays, binding list for, 167–168
<article> element, HTML, 30–31
<aside> element, HTML, 31
asynchronous functions, 101–102
attribute pseudo-classes, 68–69
<audio> element, HTML, 41–42
audio files

choosing device to play to, 205
embedding in HTML, 41

Index

Symbols
: (colon)

preceding pseudo-classes, 67
in style attribute, 48
in style command, 51

, (comma), in compound selectors, 69
{ } (curly brackets)

enclosing object literal, 80
in <style> element, 49

. (dot)
in compound selectors, 69
preceding CSS classes, 53

() (parentheses), enclosing immediate functions or
objects, 82

+ (plus sign), in compound selectors, 69
(pound symbol)

preceding element IDs, 20, 52
preceding hexadecimal RGB values, 55

> (right angle bracket), in compound selectors, 69
; (semi-colon)

in style attribute, 48
in style command, 51

[] (square brackets), enclosing attribute pseudo-
class, 68

A
<a> element, HTML, 26

in <nav> element, 31
pseudo-classes for, 67–68

about page, for Settings, 225–227
accessibility, semantic elements for, 31, 32
Account picture provider, 205
action attribute, <form> element, 35
activated event, app object, 115, 117, 119, 134

autofocus attribute, <input> element

352 Index

format for, 42
playing, 41

autofocus attribute, <input> element, 36–37
autoplay attribute

<audio> element, 41
<video> element, 43

AutoPlay event, 205
AutoPlay provider, 205

B
background-attachment property, 58
background-color property, 57
background gradients, 170
background-image property, 57–58
background-repeat property, 57–58
Background task provider, 205
background tasks, 119
BadgeLogo.png file, 123
<big> element, HTML, 34
binding

data to UI, 112–116
for arrays, 167–168
for TodoList project example, 134–135,

138–146
two-way binding, 144–146
for Video project example, 167–170

handlers to events, 19, 137–138
binding list, 167–168
Bing SDK, 312–318
bitmap images

as background of HTML elements, 57
for shared data, 217

Blank App template, 11
block elements, 25, 31, 60
<body> element, HTML, 15
books and publications

Start Here! Learn HTML5 (Microsoft Press), 2
Start Here! Learn HTML (Microsoft Press), 24
Start Here! Learn JavaScript (Microsoft Press), 2

border property, 63, 64
boxing model, 63–66
browsers, HTML5 support in, 36
building application, 141
built-in objects, JavaScript, 75
<button> element, HTML, 137

C
Cache updater contract, 205
callback functions, JavaScript, 85–88
CameraCaptureUI object, 294, 295
Camera settings provider, 205
Cascading Style Sheet. See CSS
<center> element, HTML, 34
certificate, for application, 124
certification of application, 346–349
Chakra runtime environment, 74
Charms bar, 103, 108

accessing, 202
contracts used in, 202–203
list of available printers in, enabling, 301–302

checked pseudo-class, <input> element, 68
checkpoint event, app object, 118
class attribute, HTML, 53
classes, CSS, 51, 53
clipboard, alternative to. See Share contracts
cloud, 107
codecs

audio files, 42
video files, 44

code, readability of, 121
colon (:)

preceding pseudo-classes, 67
in style attribute, 48
in style command, 51

color property, 56
colors, 55–58

background color, 57–58
defining, 55–56
foreground color, 56
gradients, 57, 170
transparency of, 56

comma (,), in compound selectors, 69
compound selectors, 69
constructor functions, JavaScript, 83–85
Contact provider, 205
contract-based callback functions, JavaScript, 87–88
contracts, 106, 201–206. See also extensions

Cache updater contract, 205
Charms bar elements using, 202–203
consuming services using, 204
File picker contract, 204, 206–216

file extensions allowed for, 211

 developer account

 Index 353

file name for, 211–213
folder selections only, 216
multiple selections for, 215
open option for, 210, 214–216, 244
save option for, 210–213, 237–238
starting location for, 210–211
suggested file name for, 211
unsnapping required for, 209–210

list of, 204–205
Play to contract, 205
Print contract, 301–305
publishing services using, 204
Search contract, 203, 205
Settings contract, 203, 205, 224–233

about page for, 225–227
persisting application settings, 228–230
privacy page for, 225
Save button not recommended, 233
settings page for, 227–233

Share contracts, 203, 204, 216–224
application targets for, 224
conditinal sharing, 223
data format for, 217
HTML format for, 221–222
if application doesn't support, 218
plain text format for, 219–220
programmatic sharing, 223
Share source contract, 204
Share target contract, 204

controls attribute
<audio> element, 41
<video> element, 43

CSS (Cascading Style Sheet), 47–48
boxing model, 63–66
classes defined in, 51, 53
colors, setting, 55–58
compound selectors, 69
default file for, in project, 13–14, 17
editing, 17–18
element IDs, referencing, 20, 52
embedded styles, 49–50, 52
external CSS files, 50–51
floating elements, 61–63
for global settings, 128
hierarchy of styles applied, 53–54
history of, 48
inline-block elements, 62–63

inline styling, 48–49
media attribute, 70–71, 306–307
media queries, 70–71, 194–195
for page-specific settings, 128
pseudo-classes, 66–69
role of, in application, 23
selectors (elements to style), 51–55, 69
style commands, 51
tag name, referencing, 53
text fonts, setting, 58–60
for UI theme, 124
version of, 48

Css folder, 123
curly brackets ({ })

enclosing object literal, 80
in <style> element, 49

custom objects, JavaScript, 83–85

D
database, persisting data to, 235, 251
data binding, 112–116

for arrays, 167–168
for TodoList project example, 134–135, 138–146
two-way binding, 144–146
for Video project example, 167–170

data collection. See forms
<datalist> element, HTML, 33–34
DataPackage object, 217
datarequested event, 223
DataTransferManager object, 217, 218
data-win-bind attribute, element, 114
data-win-control attribute, <div> element, 127, 135
Date object, JavaScript, 75
DatePicker widget, 107, 135
debugging, 141–143
debug mode, running applications in, 16–17
decodeUri function, JavaScript, 76
default.css file, 127–128
default.html file, 124–125
default.js file, 134
design of user interface. See UI (user interface)
desktop mode, Windows 8, 177
<details> element, HTML, 32
developer account, 336–340

cost of, 339

device-centric design

354 Index

creating, 7–9, 336–339
for free applications, 336–339
for paid applications, 339–340
personal or business, 337–338
renewing, 8

device-centric design, 104
devices

choosing, for playing files, 205
connecting, AutoPlay event for, 205
GPS device, 309–318

latitude and longitude, detecting, 309–312
mapping location data, 312–318
user permission for, 311

printer, 301–309
CSS media attribute for, 306–307
Print contract, 301–305
printing specific content, 305–309
templates for, 307–309
user interface for, 304–305

synchronizing settings across, 249
webcam, 291–301

capability for, setting in manifest file, 293–
294

capturing photos from, 294–297
configuring, 294
displaying photos from, 298
saving photos from, 298–301
user permission for, 296

Devices functions, 101
DirectX functions, 101
disabled pseudo-class, <input> element, 68
disabled users. See accessibility
display modes, 60–63
display property, 60–61, 62–63
<div> element, HTML, 19, 25

data-win-control attribute, 127, 135
id attribute, 27–28

document object
getElementById method, 111, 112
querySelectorAll method, 112
querySelector method, 112

DOM (Document Object Model), 23, 112
dot (.)

in compound selectors, 69
preceding CSS classes, 53

E
ECMA-262 standard, 74

element IDs, 20, 28, 52
embedded styles, 49–50, 52
enabled pseudo-class, <input> element, 68
encodeUri function, JavaScript, 76
Enterprise Sideloading, 349
equality operators, JavaScript, 76
errors, 141–142. See also debugging
escape function, JavaScript, 76
eval function, JavaScript, 76
event handlers, JavaScript, 19, 89, 90, 137–138
events

binding to handlers, 19, 89, 90, 137–138
datarequested event, 223
onactivated event, app object, 115, 117, 119, 134
oncheckpoint event, app object, 118
onready event, app object, 165
onresize event, window object, 184, 188, 195
onsettings event, app object, 224

example projects
FlickrPhotoViewer project, 279–290

displaying photos, 284–285, 289–290
downloading JSON data for, 282–283
Flickr URL parameters, 281
invalid JSON data, handling, 285–289

Gallery project, 149–164
detail page for photos, 156–159
FlipView widget for, 152–156
Navigation App template for, 149–151
persisting information with, 160–161
photo template, 155–156
zooming images, 161–164

HelloWin8 project, 12–16
HelloWin8-Step2 project, 16–20
Html5-Demos project, 26–34
InstantPhoto project, 292–301

configuring webcam, 294
displaying photos from webcam, 298
saving photos from webcam, 298–301
webcam capability, setting, 293–294

LatLong project, 309–318
address information, determining, 316–318
latitude and longitude, detecting, 309–312
mapping location data, 312–318

RssReader project, 266–278
displaying data, 275–278
manifest file, 271–272
parsing data, 272–275
reading remote data, 266–272

SnapMe project, 182–195
TilesDemo project

 forms

 Index 355

creating Live tiles, 323–324
notification object for, 324–326

TodoList project, 122–146
about page for, 225–227
building application, 141
CSS files for, 127–129
debugging, 141–143
deleting tasks, 262–264
editing tasks, 260–262
file picker for, 206–213
files and folders for, 122–124
form for, 133–146
header and footer for, 125–127
Live tiles for, 326–333
logos for, 130–132
manifest file, 129–130
persisting data, 236–247, 251–264
saving tasks, 259–260
settings page for, 227–233
sharing data from, 216–224
splash screen for, 132
WinJS references in, 124–125

Video project, 165–174
adapting to view states, 196–200
binding data, 167–170
playing videos, 172–174
SemanticZoom widget for, 165–172

exceptions, 142. See also debugging
Extensible Application Markup Language. See XAML
extensions, 205–206

F
file access, 102
File activation provider, 205
file formats

audio files, 42
handling, File activation provider for, 205
images, 153, 294
serialization formats, 240–243
for shared data, 217
video files, 44, 174

FileIO object, 237, 240
FileOpenPicker object, 210
File picker contract, 204, 206–216. See also Cache

updater contract
file extensions allowed for, 211
file name for, 211–213
folder selections only, 216

multiple selections for, 215
open option for, 210, 214–216, 244
save option for, 210–213, 237–238
starting location for, 210–211
suggested file name for, 211
unsnapping required for, 209–210

FileSavePicker object, 210
filled view state, 180–182
first-child pseudo-class, 69
Fixed Layout App template, 11
flexible boxes, 190–193
FlickrPhotoViewer project example, 279–290

displaying photos, 284–285, 289–290
downloading JSON data for, 282–283
Flickr URL parameters, 281
invalid JSON data, handling, 285–289

FlipView widget, 107, 152–156
float property, 61–62
fluid layouts, 189–200

CSS media queries for, 194–195
flexible boxes for, 190–193

Flyout widget, 107
focus pseudo-class, <input> element, 68
FolderPicker object, 216
 element, HTML, 34
font-family property, 58–59
font-size property, 58–59
fonts, setting, 58–60
font-style property, 59–60
font-weight property, 59–60
<footer> element, HTML, 29–30, 125–127
foreground color, 56
<form> element, HTML, 137

action attribute, 35
novalidate attribute, 40

formnovalidate attribute, <input> element, 40–41
forms, 34–41

input fields
adding, 35
focus on, assigning, 36–37
hints for, 37
list of values for, 33–34
types of, 35

input validation
disabling, 40–41
error message for invalid fields, 39
regular expressions for, 39–40
required fields, 38–39
submit button for, 40–41

for TodoList project example, 133–146

<frame> element, HTML

356 Index

<frame> element, HTML, 34
full-screen view states, 178–179

landscape mode, 178
portrait mode, 178–179
rotation, detection of, 179

functions, JavaScript, 81–89
anonymous functions, 81, 88–89
callback functions, 85–88
calling, 81
constructor functions, 83–85
defining, 81
extending objects using, 83
immediate functions, 82–83
importing, with contracts, 106–107
named functions, 81–82
parameters for, 81–82

functions, WinRT API, 101–102

G
Gallery project example, 149–164

detail page for photos, 156–159
FlipView widget for, 152–156
Navigation App template for, 149–151
persisting information with, 160–161
photo template, 155–156
zooming images, 161–164

generateNumber() function example, 19
getElementById method, document object, 111, 112
global namespace, JavaScript, 78
global object, JavaScript, 75–76
global variables, JavaScript, 78, 92–93
GPS device, 309–318

latitude and longitude, detecting, 309–312
mapping location data, 312–318
user permission for, 311

gradients, 57, 170
Grid App template, 11, 122

H
<h1> element, HTML, 25
handlers, binding to events, 19, 137–138
<header> element, HTML, 29–30, 125–127
height attribute, <video> element, 43
height property

for HTML elements, 65–66
for media queries, 71

HelloWin8 project example, 12–16

HelloWin8-Step2 project example, 16–20
highlighting text. See <mark> element, HTML
hoisting, in JavaScript, 79
home.css file, 149
home folder, 149
home.html file, 149
home.js file, 149
home screen for application, 124, 124–125, 129
hover pseudo-class, anchors, 67–68
HTML5, 23–24. See also specific elements

block elements, 25, 31, 60
browser support for, 36
default file for, in project, 13–14
display modes, 60–63
editing, 14–15, 16–17
element IDs

defining, 28, 52
referencing in CSS, 20, 52

inline elements, 25, 60–61
input forms, 34–41
linking JavaScript to, 89–92
multimedia, 41–44
page layout, 24–31
removed (unsupported) elements, 34
resources for, 2
role of, in application, 23
semantic elements, 31, 32

Html5-Demos project example, 26–34
HtmlControl widget, 108
HTML format, for shared data, 217, 221–222
HTTP requests

errors in, handling, 268–269
timeouts for, 270
WinJS.xhr object for, 266–270

hyperlinks
<a> element for, 26

in <nav> element, 31
pseudo-classes for, 67–68

for navigation, 148
Hypertext Markup Language. See HTML5

I
icons, compared to Live tiles, 319
id attribute, <div> element, 27–28
<iframe> element, HTML, 173–174
images. See also webcam

as background of HTML elements, 57
displaying, choosing device for, 205

 latitude and longitude, detecting

 Index 357

file formats for, 153, 294
gallery of. See Gallery project example
logos for application, 123, 130–132
Paint.NET tool, 130–131
splash screen, 123, 132
for user account, 205
zooming, 161–164

Images folder, 123
immediate functions, JavaScript, 82–83
immediate objects, JavaScript, 82–83
Infinity value, JavaScript, 75
inline-block elements, 62–63
inline elements, 25, 60–61
inline styling, 48–49
innerHtml property, 113
innerText property, 113, 115
<input> element, HTML, 35–37

autofocus attribute, 36–37
formnovalidate attribute, 40–41
list attribute, 33–34
onclick attribute, 90
oninvalid attribute, 39
pattern attribute, 39–40
placeholder attribute, 37
pseudo-classes for, 68
required attribute, 38–39
type attribute, 35, 136, 162

input fields
adding, 35
focus on, assigning, 36–37
hints for, 37
list of values for, 33–34
types of, 35

input forms. See forms
input validation, 38–41

disabling, 40–41
error message for invalid fields, 39
regular expressions for, 39–40
required fields, 38–39
submit button for, 40–41

InstantPhoto project example, 292–301
configuring webcam, 294
displaying photos from webcam, 298
saving photos from webcam, 298–301
webcam capability, setting, 293–294

Internet Client capability, 271
Internet data. See remote data
isFinite function, JavaScript, 76
isNaN function, JavaScript, 76
ISO/IEC 16262:2011 standard, 74

isolated storage
in TodoList project, 251–264
types of, 250–251

J
JavaScript, 73–74

built-in objects, 75
Chakra runtime environment for, 74
default file for, in project, 13–14
equality operators, 76
event handlers, 89, 90
functions, 81–89
global namespace, 78
global object, 75–76
hoisting, 79
as interpreted language, 74
linking to HTML pages, 89–92
maintaining state, 93
null values, 76
objects, 79–80
primitive types, 74–75
resources for, 2
role of, in application, 23
standards for, 74
undefined values, 76
variables, 77–79, 92–93

jQuery library, 91–92
JScript .NET, 1
Js folder, 124
JSLint tool, 78
JSON data, 242–243, 278–290

deserializing, 245–247
displaying, 284–285
downloading, 282–283
invalid, handling, 285–289

JSONLint website, 286–288

K
kernel, operating system, 100
Knockout library, 116

L
landscape mode, 178
last-child pseudo-class, 69
latitude and longitude, detecting, 309–312

LatLong project example

358 Index

LatLong project example, 309–318
address information, determining, 316–318
latitude and longitude, detecting, 309–312
mapping location data, 312–318

lifecycle of applications, 116–119
<link> element, HTML, 51
links

<a> element for, 26
in <nav> element, 31
pseudo-classes for, 67–68

for navigation, 148
liquid layouts. See fluid layouts
list attribute, <input> element, 33–34
ListView widget, 108
Live tiles, 103, 319–322

adding to applications, 326–333
background agents for, 333
compared to icons, 319
creating, 323–326
moving, 320–321
notification object for, 324–326, 333
resizing, 322
templates for, 324–325, 328–329
unpinning applications from, 322

local disk, storing application data to, 249–250. See
also File picker contract

local isolated storage, 250
localization, 94
local machine, running applications on, 15, 16
localSettings object, 228–230, 248–249
local variables, JavaScript, 77
location (path) for projects, 12
Lock screen, background task information on, 119
Logo.png file, 123
logos for application, 123, 130–132
longitude and latitude, detecting, 309–312
loop attribute

<audio> element, 41
<video> element, 43

M
manifest file, 124, 129–130

enabling Internet capability, 271–272
enabling Pictures Library access, 298–299
enabling webcam capability, 293–294

margin property, 63, 64–65
<mark> element, HTML, 33
master-detail view. See SemanticZoom widget

Math object, JavaScript, 75
max-height property

for HTML elements, 66
for media queries, 71

max-width property
for HTML elements, 66
for media queries, 71

media attribute, 70–71, 306–307
Media functions, 101
media queries, CSS, 70–71, 194–195
Menu widget, 108
Microsoft Bing SDK, 312–318
min-height property

for HTML elements, 66
for media queries, 71

min-width property
for HTML elements, 66
for media queries, 71

MP3 files, 42
MP4 files, 44
-ms-flex-XXX attributes, 191
multimedia, 41–44

audio, 41–42
video, 42–44

muted attribute, <video> element, 43

N
named functions, JavaScript, 81–82
NaN value, JavaScript, 75
<nav> element, HTML, 31
navigation

home screen for, 148–149, 150–151
hyperlinks for, 148
model for, 147–149
Navigation App template for, 11, 122, 149–151
page fragments for, 148–149, 151
persisting information with, 160–161

Navigation App template, 11, 122, 149–151
navigator.js file, 150
.NET Framework, 5

compared to WinJS library, 102
history of, 1
version of, 5

Networking functions, 101
new constructor, JavaScript, 80, 84
New Project link, 10
notification object, 324–326, 333
NOT keyword, media queries, 71

 Print settings provider

 Index 359

novalidate attribute, <form> element, 40
null values, JavaScript, 76
numberButtonClick() function example, 19
Number object, JavaScript, 75
number type, JavaScript, 75

O
object literals, JavaScript, 80
objects

application, persisting, 235–247
appending data to files, 240
deleting files, 240
reading files, 243–247
serialization formats for, 240–243, 245–247
writing files, 237–240

JavaScript, 79–80
adding members to, 79–80, 83
built-in objects, 74–75
creating new instances of, 80
custom objects, creating, 83–85
global object, 75–76
immediate objects, 82–83
prototype for, 80, 83
wrapper objects, 74, 78

OGG files, 42, 44
onactivated event, app object, 115, 117, 119, 134
oncheckpoint event, app object, 118
onclick attribute, <input> element, 90
on-demand elements in UI, 108
oninvalid attribute, <input> element, 39
onready event, app object, 165
onresize event, window object, 184, 188, 195
onsettings event, app object, 224
operating system kernel, 100
orientation property, media queries, 71

P
<p> element, HTML, 15
Package.appxmanifest file, 124, 129–130
packaging applications, 342–349
padding property, 63, 64
PageControlNavigator object, 150
PageControl widget, 108
page layout, HTML5 elements for, 24–31
pages folder, 149
Paint.NET tool, 130–131
parameters for functions, 81–82

parentheses (()), enclosing immediate functions or
objects, 82

parseFloat function, JavaScript, 76
parseInt function, JavaScript, 76
path (location) for projects, 12
pattern attribute, <input> element, 39–40
pattern matching. See regular expressions
period (.)

in compound selectors, 69
preceding CSS classes, 53

persisting data
application objects, 235–247

appending data to files, 240
deleting files, 240
reading files, 243–247
serialization formats for, 240–243, 245–247
writing files, 237–240

application settings, 228–230, 248–249
to database, 235, 251
to isolated storage

in TodoList project, 251–264
types of, 250–251

to local disk, 249–250. See also File picker
contract

to localSettings object, 248
to removable storage devices, 250

Pictures Library, 298–299
placeholder attribute, <input> element, 37
Play to contract, 205
plus sign (+), in compound selectors, 69
portrait mode, 178–179
poster attribute, <video> element, 43
pound symbol (#)

preceding element IDs, 20, 52
preceding hexadecimal RGB values, 55

preload attribute
<audio> element, 41
<video> element, 43

Presentation functions, 101
primitive types, JavaScript, 74–75
Print contract, 301–305
printer, 301–309

CSS media attribute for, 306–307
Print contract for, 301–305
printing specific content, 305–309
templates for, 307–309
user interface for, 304–305

PrintManager object, 303
Print settings provider, 205

privacy page, for Settings

360 Index

privacy page, for Settings, 225
product key, Visual Studio 2012, 5–7
programming languages, 10, 99. See also JavaScript
projects. See also example projects

building applications from, 15–16
creating, 10–16
CSS for. See CSS (Cascading Style Sheet)
files and folders in, 122–124

creating, 125
with Navigation App template, 149–150
opening, 14

HTML for. See HTML5
JavaScript for. See JavaScript
location (path) for, 12
templates for

choosing, 10–11
predefined, list of, 11

Promise object, 118
error handling with, 268–269
timeouts with, 270
WinJS.xhr object returning, 268

proportional design. See fluid layouts
prototype common property, JavaScript, 80
pseudo-classes, CSS, 66–69
publishing applications, 335, 340–349

cost of, 335, 339
developer account for, 336–340
naming application for, 340–342
packaging application for, 342–349
for sideloaded applications, 349
submitting for certification, 346–349

Q
querySelectorAll method, document object, 112
querySelector method, document object, 112

R
random numbers, generating, 18–19
readability of code, 121
ready event, app object, 165
redundancy in UI, zero, 106
References folder, 123
RegExp object, JavaScript, 75
regular expressions, for input validation, 39–40
Release mode, 342–343
remote data

JSON data, 278–290

RSS data, 265–278
WinJS.xhr object for, 266–270

remote machine, running applications on, 15
removable storage devices, 250
required attribute, <input> element, 38–39
resize event, window object, 184, 188, 195
resources. See books and publications; website

resources
responsiveness of UI, 105
rgba function, 56
RGB colors, 55
rgb function, 55
right angle bracket (>), in compound selectors, 69
roaming isolated storage, 251, 259–264
roamingSettings object, 249
rotation of device, detecting, 179
RSS data, 265–278

displaying RSS data, 275–278
downloading, 266–272
parsing data, 272–275

RssReader project example, 266–278
displaying RSS data, 275–278
manifest file, 271–272
parsing data, 272–275
reading remote data, 266–272

RTF format, for shared data, 217
run time errors, 141. See also debugging

S
Save picker contract. See File picker contract
<script> element, HTML, 90–91
Search contract, 203, 205
<section> element, HTML, 30–31
<select> element, HTML, 136
selectors, 51–55, 69
semantic elements, 31, 32
SemanticZoom widget, 108, 165–172
semi-colon (;)

in style attribute, 48
in style command, 51

serialization formats, 240–243
services, 204. See also contracts
Settings contract, 203, 205, 224–233

about page for, 225–227
persisting application settings, 228–230
privacy page for, 225
Save button not recommended, 233
settings page for, 227–233

 TodoList project example

 Index 361

settings event, app object, 224
Settings panel, 203, 224

adding items to, 224–227
dismissing, 226
running code before and after, 232

Share contracts, 203, 204, 216–224
application targets for, 224
conditinal sharing, 223
data format for, 217
HTML format for, 221–222
if application doesn't support, 218
plain text format for, 219–220
programmatic sharing, 223
Share source contract, 204
Share target contract, 204

sideloaded applications, 9, 349
simulator, running applications in, 15, 16
SmallLogo.png file, 123
SnapMe project example, 182–195
snapped view state, 179–182, 188–189
Solution Explorer panel, 14
<source> element, HTML, 42
 element, HTML

data-win-bind attribute, 114
innerText property, 115

splash screen, 123, 132
SplashScreen.png file, 123
Split App template, 11, 122
SQLite database, 251
square brackets ([]), enclosing attribute pseudo-

class, 68
src attribute

<audio> element, 41
<script> element, 91
<video> element, 43

stack, Windows 8, 100–101
standard desktop mode, Windows 8, 177
standard mode, Windows 8, 98–99
Start Here! Learn HTML5 (Microsoft Press), 2
Start Here! Learn HTML (Microsoft Press), 24
Start Here! Learn JavaScript (Microsoft Press), 2
start page. See home screen for application
state (application), maintaining, 93

between pages, 160–161
between view states, 182–183

states (lifecycle) of applications, 116–119, 161
states (view) of application, 177–178

adapting content to, 187–200
behavior of application not affected by, 181, 188
detecting changes in, 184–187

filled view state, 180–182
full-screen view states, 178–179

landscape mode, 178
portrait mode, 178–179
rotation, detection of, 179

maintaining application state between, 182–183
snapped view state, 179–182, 188–189

restrictions on, 180
unsnapping programmatically, 188–189

stopFloating element, 62
StorageFile object, 212, 300
Storage functions, 101
StoreLogo.png file, 123
String object, JavaScript, 75
string type, JavaScript, 75
style attribute, HTML, 48–49
<style> element, HTML, 49–50
style sheets. See CSS (Cascading Style Sheet)
submit button, for forms submission, 40–41
<summary> element, HTML, 32
suspended state, 118–119

Background task provider for, 205
devices having, 161

syntax errors, 141. See also debugging

T
tags, HTML. See HTML5
templates

choosing, 10–11, 121–122
predefined, list of, 11

temporary isolated storage, 251
<textarea> element, HTML, 135
text fonts, setting, 58–60
text format, for shared data, 217, 219–220
theme for application UI, 124
theme for Visual Studio, 13
TileNotification object, 324–326
TilesDemo project example

creating Live tiles, 323–324
notification object for, 324–326

TimePicker widget, 108
TodoList project example, 122–146

about page for, 225–227
building application, 141
CSS files for, 127–129
debugging, 141–143
deleting tasks, 262–264
editing tasks, 260–262

ToggleSwitch widget

362 Index

file picker for, 206–213
files and folders for, 122–124
form for, 133–146
header and footer for, 125–127
Live tiles for, 326–333
logos for, 130–132
manifest file, 129–130
persisting data, 236–247, 251–264
saving tasks, 259–260
settings page for, 227–233
sharing data from, 216–224
splash screen for, 132
WinJS references in, 124–125

ToggleSwitch widget, 108
Tools menu, Options

default path, setting, 12
theme, setting, 13

Tooltip widget, 108, 137, 138
touch input, 103, 105
transparency for colors, 56
type attribute, <input> element, 35, 136, 162
typeof operator, JavaScript, 76, 80
types, JavaScript, 74–75

U
<u> element, HTML, 34
ui-dark.css file, 124
ui-light.css file, 124
UI (user interface), 102–107

App bar, 103, 109–112
binding data to, 112–116
Charms bar, 103
cloud use by, 107
dark or light theme for, 124
design principles for, 104–107
device-centric, 104
importing functions for, 106
Live tiles, 103
on-demand elements in, 108
platform influencing, 106
redundancy in, zero, 106
responsiveness of, 105
touch-enabled, 103, 105
visual widgets, 107–108

undefined values, JavaScript, 76
unescape function, JavaScript, 76
URI format, for shared data, 217
URL, accessing with WinJS.xhr object, 266–270

user account, image for, 205
user interface. See UI (user interface); See Windows

8 UI

V
variables, JavaScript, 77–79

global variables, 78, 92–93
hoisting, 79
local variables, 77

var keyword, JavaScript, 77, 78, 79
<video> element, HTML, 42–44
Video project example, 165–174

adapting to view states, 196–200
binding data, 167–170
playing videos, 172–174
SemanticZoom widget for, 165–172

videos
choosing device to play to, 205
formats for, 44, 174
playing, 172–174

ViewBox widget, 108
view states, 177–178

adapting content to, 187–200
behavior of application not affected by, 181, 188
detecting changes in, 184–187
filled view state, 180–182
full-screen view states, 178–179

landscape mode, 178
portrait mode, 178–179
rotation, detection of, 179

maintaining application state between, 182–183
snapped view state, 179–182, 188–189

restrictions on, 180
unsnapping programmatically, 188–189

visited pseudo-class, anchors, 67–68
Visual Studio 2012

configuring, 5–9
developer account for, 7–9, 336–339
editions of, 2, 3
installing, 3–5
product key for, 5–7
programming language for, 10
projects in. See projects
theme for, setting, 13
Windows Store account for, 9

 Windows 8 UI

 Index 363

W
W3C (World Wide Web Consortium), 48
WAV files, 42
web browsers. See browsers
webcam, 291–301

capability for, setting in manifest file, 293–294
capturing photos from, 294–297
configuring, 294
displaying photos from, 298
saving photos from, 298–301
user permission for, 296

website resources
Bing SDK, 313
CSS predefined colors, 55
flexible boxes, 190
jQuery library, 91
JSLint tool, 78
JSONLint, 286
SQLite database, 251
Visual Studio Express download, 3
Visual Studio features, 3
Windows 8 download, 3

WideLogo.png file, 123
widgets, WinJs library, 107–108
width attribute, <video> element, 43
width property, 65–66
width property, media queries, 71
window.print method, 309
Windows 8

editions of, 2, 3
installing, 2–3
stack, 100–101
standard desktop mode, 98–99, 177

Windows 8 applications, 98–99
background tasks for, 119
building, 15–16, 141
certificate for, 124
debugging, 141–143
exiting, 16
fonts for, changing, 58
home screen for, 124, 124–125, 129
income and taxes from, 340
installing

methods of, 336
requirements for, 8, 9

launching, 117–118, 165
lifecycle of, 116–119
localization for, 94
logos for, 123, 130–132

maintaining state, 93
naming, 340–342
packaging, 124, 342–349
platforms for, 344–345
programming languages for, 10, 99
projects for. See projects
publishing, 335, 340–349

cost of, 335, 339
developer account for, 336–340
naming application for, 340–342
packaging application for, 342–349
for sideloaded applications, 349
submitting for certification, 346–349

resuming, 119
running

in debug mode, 16–17
on local machine, 15, 16
on remote machine, 15
in simulator, 15, 16

splash screen for, 123, 132
states of, 116–119, 161
storing data in, 102
suspending, 118
tools required for, 1–5, 23–24
unpinning from Start screen, 322
user interface for. See Windows 8 UI
view states of, 177–178

adapting content to, 187–200
behavior of application not affected by, 188
detecting changes in, 184–187
filled view state, 180–182
full-screen view states, 178–179
maintaining application state between, 182–

183
snapped view state, 179–182, 188–189

Windows 8 SDK, 5
Windows 8 UI, 102–107

App bar, 103, 109–112
binding data to, 112–116
Charms bar, 103
cloud use by, 107
dark or light theme for, 124
design principles for, 104–107
device-centric, 104
importing functions for, 106
Live tiles, 103
on-demand elements in, 108
platform influencing, 106
redundancy in, zero, 106
responsiveness of, 105

Windows App Certification Kit

364 Index

touch-enabled, 103, 105
visual widgets, 107–108

Windows App Certification Kit, 346–347
Windows clipboard, alternative to. See Share

contracts
Windows Live ID, 7
Windows Runtime environment. See WinRT

environment
Windows Store account, 9
Windows Store applications. See Windows 8

applications
WinJS.Application object, 160
WinJS.Binding.List object, 167
WinJs library, 1, 23, 74

compared to .NET Framework, 102
references to, in default.html file, 124
visual widgets, 107–108

WinJS logger, 112
WinJS.Navigation object, 159
WinJS.UI.AppBarCommand object, 110
WinJS.UI.AppBar object, 110
WinJS.UI.FlipView widget, 152–156
WinJS.UI.SemanticZoom widget, 165–172

WinJS.UI.Tooltip object, 137
WinJS.xhr object, 266–270

downloading JSON data, 282–283
downloading RSS data, 266–272
errors in, handling, 268–269
manifest file settings for, 271
parameters for, 267–268
Promise object returned by, 268
timeouts with, 270

WinRT (Windows Runtime) environment, 1, 97–102
API for, 100–102
stack, 100–101
system classes, WinJs library for, 1

World Wide Web Consortium. See W3C
wrapper objects, JavaScript

for global namespace, 78
for primitive types, 74

X
XAML (Extensible Application Markup

Language), 99, 100
XHR, WinJS.xhr object, 266–267
Xxx_TemporaryKey.pfx file, 124

Y
YouTube videos, playing, 173–174

Z
zooming images, 161–164

About the authors

Dino Esposito, a long-time trainer and top-notch consultant, is the author
of many popular books for Microsoft Press that have helped the professional
growth of thousands of .NET developers and architects. Dino is the CTO
of a fast-growing company that provides software and mobile services to
 professional sports, and currently is also a technical evangelist for JetBrains,
where he focuses on Android and Kotlin development, and is a member of
the team that manages WURFL—the database of mobile devices used by
 organizations such as Google and Facebook. Follow Dino on Twitter at
@despos and on http://software2cents.wordpress.com.

Even though he’s still a teenager (he’s only 15), Francesco Esposito has
 accumulated significant experience with mobile application development for a
variety of platforms, including iOS with Objective C and MonoTouch, Android
via Java, Windows Phone, and even BlackBerry. He wrote most of the code for
IBI12—the official multi-platform app for the Rome ATP Masters 1000 tennis
tournament.

When not writing apps, hanging out with friends, or practicing water polo,
he likes going to school, where his secret goal is to achieve the highest marks
ever so he can get a scholarship to Harvard or just buy his own Surface tablet.

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

	Contents at a Glance
	Introduction
	Contents
	Chapter 1: Using Visual Studio 2012 Express edition for Windows 8
	Getting ready for development
	The software you need
	Configuring Visual Studio 2012
	Start playing with Windows 8 apps
	The “Hello Windows 8” application
	Adding a bit more action

	Summary

	Chapter 2: Making sense of HTML5
	Elements of a webpage
	Building the page layout with HTML5
	Miscellany of other new elements

	Collecting data
	Adjusting input fields
	Form submission

	Multimedia elements
	The audio element
	The video element

	Summary

	Chapter 3: Making sense of CSS
	Styling a webpage
	Adding CSS information to pages
	Selecting elements to style

	Basic style commands
	Setting colors
	Controlling text
	HTML display modes
	Spacing and the boxing model

	Advanced CSS scenarios
	CSS pseudo-classes
	Media Queries

	Summary

	Chapter 4: Making sense of JavaScript
	Language basics
	The JavaScript type system
	Dealing with variables
	Dealing with objects
	Dealing with functions

	Organizing your own JavaScript code
	Linking JavaScript code to pages
	Practices and habits

	Summary

	Chapter 5: First steps with Windows 8 development
	The Windows 8 Runtime (WinRT)
	Windows Store apps and other apps
	An overview of the WinRT API

	The Windows Store app user interface
	Aspects of the Windows 8 UI
	Inspiring principles of the Windows 8 UI
	Components for the presentation layer
	Data binding

	Understanding the application’s lifecycle
	States of a Windows Store application
	Background tasks

	Summary

	Chapter 6: The user interface of Windows Store applications
	Foundation of Windows Store applications
	Defining the layout of the application
	Application attributes

	Getting serious with the TodoList application
	Building an interactive form
	Putting data into the form

	Summary

	Chapter 7: Navigating through multimedia content
	Foundation of page navigation
	The navigation model of Windows Store applications
	Inside the Navigation App template

	Building a gallery of pictures
	Introducing the FlipView component
	Navigating to a detail page
	Zooming the image in and out

	Building a video clip gallery
	Introducing the SemanticZoom component
	Dealing with video

	Summary

	Chapter 8: States of a Windows 8 application
	States of a Windows Store application
	Full-screen view states
	Snapping applications
	Making the application reactive

	Towards an adaptive layout
	General principles of snapped and filled views
	Fluid layouts

	Summary

	Chapter 9: Integrating with the Windows 8 environment
	Contracts and common tasks
	Aspects of Windows 8 contracts
	Contracts and extensions

	Consuming the File picker contract
	Choosing a file to save data
	Choosing a file to load data

	The Share contract
	Publishing an application’s data
	Adding share source capabilities to TodoList

	Providing a Settings page
	Populating the Settings charm
	Creating a functional Settings page

	Summary

	Chapter 10: Adding persistent data to applications
	Persisting application objects
	Making task objects persistent
	Choosing a serialization format
	Creating Task objects from files

	Using the application’s private storage
	Storage options in Windows 8
	Creating tasks in the isolated storage

	Summary

	Chapter 11: Working with remote data
	Working with RSS data
	Getting remote data
	Parsing and displaying downloaded data
	Drilling down into data

	Working with JSON data
	Laying out a Flickr viewer
	Enhancing the application

	Summary

	Chapter 12: Accessing devices and sensors
	Working with the webcam
	Capturing the webcam stream
	Processing captured items

	Working with the printer
	The Print contract
	Printing context-specific content

	Working with the GPS system
	Detecting latitude and longitude
	Making use of geolocation data

	Summary

	Chapter 13: Adding Live tiles
	What’s a Live tile anyway?
	Tiles in action
	Creating Live tiles for a basic application

	Adding Live tiles to an existing application
	Bringing back the TodoList application
	Implementation of Live tiles

	Summary

	Chapter 14: Publishing an application
	Getting a developer account
	Registering as a developer of free applications
	Registering as a developer of paid applications

	Steps required to publish an application
	Choosing a name for the application
	Packaging an application
	Sideloaded applications

	Summary

	Index
	About the Authors

